Integrating sensor data and machine learning to advance the science and management of river carbon emissions

Brown, L.E. orcid.org/0000-0002-2420-0088, Maavara, T., Zhang, J. et al. (17 more authors) (2024) Integrating sensor data and machine learning to advance the science and management of river carbon emissions. Critical Reviews in Environmental Science and Technology. ISSN 1064-3389

Abstract

Metadata

Item Type: Article
Authors/Creators:
  • Brown, L.E. ORCID logo https://orcid.org/0000-0002-2420-0088
  • Maavara, T.
  • Zhang, J.
  • Chen, X.
  • Klaar, M.
  • Moshe, F.O.
  • Ben-Zur, E.
  • Stein, S.
  • Grayson, R.
  • Carter, L.
  • Levintal, E.
  • Gal, G.
  • Ziv, P.
  • Tarkowski, F.
  • Pathak, D.
  • Khamis, K.
  • Barquín, J.
  • Philamore, H.
  • Gradilla-Hernández, M.S.
  • Arnon, S.
Copyright, Publisher and Additional Information:

© 2024 the author(s). This is an open access article under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any medium, provided the original work is properly cited.

Keywords: carbon dioxide; machine learning; methane; metabolism; sensors; water quality
Dates:
  • Published (online): 24 November 2024
  • Accepted: 9 November 2024
Institution: The University of Leeds
Academic Units: The University of Leeds > Faculty of Environment (Leeds) > School of Geography (Leeds) > River Basin Processes & Management (Leeds)
Funding Information:
Funder
Grant number
EU - European Union
765553
NERC (Natural Environment Research Council)
NE/V014277/1
UKRI (UK Research and Innovation)
MR/S032126/1
Depositing User: Symplectic Publications
Date Deposited: 13 Nov 2024 15:53
Last Modified: 03 Dec 2024 11:54
Status: Published online
Publisher: Taylor & Francis
Identification Number: 10.1080/10643389.2024.2429912
Open Archives Initiative ID (OAI ID):

Export

Statistics