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  ABSTRACT
 Estimates of greenhouse gas 
emissions from river networks 
remain highly uncertain in 
many parts of the world, lead-
ing to gaps in global invento-
ries and preventing effective 
management. In-situ sensor 
technology advances, coupled 
with mobile sensors on robotic 
sensor-deployment platforms, 
will allow more effective data 
acquisition to monitor carbon 
cycle processes influencing river 
CO2  and CH4  emissions. 
However, if countries are to respond effectively to global climate change threats, sensors must be 
installed more strategically to ensure that they can be used to directly evaluate a range of manage-
ment responses across river networks. We evaluate how sensors and analytical advances can be inte-
grated into networks that are adaptable to monitor a range of catchment processes and human 
modifications. The most promising data analytics that provide processing, modeling, and visualizing 
approaches for high-resolution river system data are assessed, illustrating how multi-sensor data cou-
pled with machine learning solutions can improve both proactive (e.g. forecasting) and reactive (e.g. 
alerts) strategies to better manage river catchment carbon emissions.     
      Data measurement and integration can be used to advance assessments and management of river 
carbon dynamics and water quality.  
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Introduction

Despite the importance of river systems for water supply, and other ecosystem services such as 
regulation of nutrient cycles (e.g. nitrogen and phosphorus) and supporting fisheries, they are 
highly degraded ecosystems due to anthropogenic stressors such as modified flows, urbanization, 
agriculture and wastewater (Vörösmarty et  al., 2010). By altering physical, chemical, and biological 
components of river systems, anthropogenic interventions play an important role influencing 
climate change through greenhouse gas (GHG) emissions. River systems globally contribute net 
estimated annual CO2 emissions equivalent to 20-24% of fossil fuel emissions, 35-65% of the 
CH4 emissions from all sources, and 4–5% of N2O total emissions (Battin et al., 2023; Friedlingstein 
et  al., 2022; Rosentreter et  al., 2021). However, global estimates of river net GHG emissions 
remain highly uncertain, due to sparse data availability and inconsistent monitoring practices, 
perpetuating large gaps in international emissions inventories and preventing effective manage-
ment (Rudee & Phillips, 2021). In this review we focus on CO2 and CH4 as gases that are most 
often quantified in river systems due to the availability of multiple sensors for measuring carbon 
cycle processes. Other GHGs with natural sources, notably N2O and SF6, typically have to be 
measured with gas analyzers although dissolved gas sensors for the former are beginning to 
emerge (UNISENSE, 2024). The Paris Agreement (UNFCCC, 2018) signed at the UN Climate 
Change Conference of Parties (COP21) in 2015 recognized the crucial need to quantify GHG 
sources and sinks that have not yet been adequately quantified. More effective river catchment 
monitoring and management are needed urgently for countries to respond effectively to global 
climate change threats by better managing carbon emissions.

Quantifying aquatic carbon cycle processes is challenging. Processes such as photo-oxidation, 
metabolism (production, respiration), and methanogenesis can be estimated from dissolved gas 
measurements, organic matter degradation assays, GHG emissions (e.g. floating chambers), or 
from dissolved gas concentrations relative to atmospheric concentrations (Aho et  al., 2021; 
Appling et  al., 2018; Duc et  al., 2013). However, most studies have collected short-duration 
datasets in situ, at small numbers of sites, with low temporal resolution. Estimates of photo-oxidation 
and decomposition with experimental manipulations are also typically resolved at weekly-to-
monthly timescales. Even where daily-to-weekly sampling takes place, it often occurs at selected 
locations during daylight hours or misses important events such as flow peaks (Bieroza et  al., 
2023). Thus, we lack a clear understanding of how river stressors and management activities 
influence emission “hotspots” in space, and/or “hot moments” in time (W. Zhang et  al. 2021), 
risking either over- or under-estimation of emissions. Recent reviews and opinion articles have 
broadly outlined a need for global river observation systems for river carbon monitoring (Battin 
et  al., 2023; Dean & Battin, 2024) but lacked details on how these networks could be imple-
mented. Here we evaluate how recent advances in autonomous (field deployable and wireless) 
sensor networks, and robotic mobile sensing platforms, can be harnessed to meet this requirement 
by combining high-frequency, continuous data at multiple locations, with machine learning (ML) 
models to improve carbon emission estimates and overall water management in river networks.

The emergence of sensor technologies for high-resolution space/time monitoring offers the 
potential to evaluate fundamental linkages between hydrological regime, physicochemical con-
ditions, and nutrient dynamics to fill knowledge gaps in understanding processes related to 
carbon emissions. Links between river physical properties, network structure, and ecosystem 
carbon cycle parameters, including metabolism, have advanced notably with Cole et  al. (2007) 
concept of “leaky pipes” for carbon loss along the land-ocean aquatic continuum, and the 
Pulse-Shunt Concept, which added transport vs reaction timescales related to flow (Raymond 
et  al., 2016). Wollheim et  al. (2018) proposed a similar River Network Saturation concept, 
describing how river networks become saturated with carbon at high flows, particularly in 
low-order streams, where terrestrial carbon is “pulsed” to river networks and “shunted” down-
stream because high flows restrict time for uptake reactions in quantifiable amounts. Thus, most 
annual downstream carbon export occurs during a small number of high-flow events (Raymond 
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et  al., 2016). At low flows, particularly in high-order rivers, carbon uptake fluxes and subsequent 
emissions are much higher as transport timescales are long and reactions can occur by 
photo-mineralization and co-metabolism on bio-aggregates (Battin et  al., 2008). Continuous 
measurements of dissolved oxygen (DO) have enabled many of these advances in understanding 
river carbon cycling processes of primary production and respiration, but the spatial distribution 
of monitoring systems remains limited and globally unbalanced. For example, across the United 
States, the relatively widespread availability of sensor data maintained by the US Geological 
Survey (USGS) (Figure 1), has promoted an understanding of key drivers of river metabolism 
(Appling et  al., 2018). A range of datasets are also collected in regional initiatives (e.g. Figure 
1b, c) yet for large parts of the world, including much of the global south, we still have only 
patchy knowledge of the parameters needed to quantify carbon transformations and emissions, 
or data collected are not open access (Dean & Battin, 2024). Even in countries with advanced 
sensor networks, there are still large gaps spatially between sensor locations (Figure 1b), and 
high-order, poorly mixed rivers, which present challenges to developing representative datasets, 
unless multiple sensors are deployed across river cross sections.

Sensor network developments can improve our understanding of spatial and temporal carbon 
dynamics significantly (Segatto et  al., 2023) but cost prevents monitoring all rivers. Coupling 

Figure 1. distribution of river monitoring stations with sensors suitable for developing metabolism estimates and carbon emis-
sions has a strong spatial bias. examples of the most dense nationwide networks are: (a) Usgs water quality monitoring sites in 
the continental Usa used to predict river metabolism; (b) spanish environmental department water Quality automatic 
information system (saiCa); (c) a catchment-scale monitoring network in the Connecticut river, ne Usa (hosen et  al., 2021).
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sensor developments with advances in fixed sensor technology and data analytics, as well as 
mobile robotics and ML, will be vital to achieve spatially continuous data and interpolate spa-
tially explicit datasets to derive whole catchment understanding (Khandelwal et  al., 2023; O’Grady 
et  al., 2021). By automating sensors using computer science advances and telemetry systems, it 
is becoming possible to monitor, in near real-time, how aquatic ecosystems are functioning. 
Additionally, the Internet of Things (IoT) offers significant potential in delivering up-to-date 
water quality data with a high level of precision and accuracy, enabling the detection of even 
minor fluctuations in water quality. IoT facilitates the connection of various instruments, includ-
ing electronic devices and sensors, utilizing the communication infrastructure and cloud com-
puting resources already in place (Amador-Castro et  al., 2024). This offers the potential to 
validate existing carbon dynamic scientific models and develop the next generation of 
catchment-scale numerical predictive models. There is now a potential for a step-change in 
adaptive management, moving away from current low-resolution, relatively slow turnover data 
collection, with delayed analytics that impede effective decision-making, to faster and more 
accurate workflows, even at national scales. This will subsequently enable scientists to advance 
emission quantifications at national to global levels and develop intervention plans.

In this review, we evaluate the potential for using sensor data and machine learning to advance 
river carbon cycle processes and emission management, both responsively to stressor events and 
proactively to enhance the management of both water resource security and downstream river 
system services. Taking into consideration the key drivers of river carbon processes and emis-
sions, we demonstrate how recent technological advances in the development and implementation 
of sensor networks for river catchment management can be harnessed to improve knowledge of 
aquatic processes. We examine how sensor and analytics advances offer new opportunities to 
develop strategic monitoring networks that can capture impacts resulting from a range of catch-
ment processes and human modifications. We illustrate the benefits of incorporating emerging, 
affordable sensor technologies, and novel robotic sensor-deployment technologies, which allow 
for high-resolution monitoring, and explain how a variety of water quality parameters can be 
used to develop causal relationships between drivers and response variables. We then assess the 
most promising analytical approaches and methods for processing, modeling, and visualizing 
high-resolution river system data, demonstrating how novel applications of sensor networks 
coupled with artificial intelligence (AI) solutions could be developed.

Advancing river management with sensor networks and data analytics

Many traditional methods for monitoring river systems are resource-intensive and deliver results 
sometimes weeks-months after sampling and ecosystem changes occur (e.g. biological sampling 
followed by laboratory identification, then analysis/interpretation, or; “snapshot” sampling of 
water chemistry (Dean & Battin, 2024)). Manually operated sensors furthermore offer only a 
snapshot of temporal dynamics. Both delays and low-resolution data can result in less effective 
management responses, such as detecting pollution incidents, or optimizing water systems where 
tradeoffs between water supply and environmental needs are required. In contrast, there is 
increasing availability of affordable, robust, and high-resolution sensors, coupled with distributed 
data transfer systems (e.g. LoRaWAN - long range wide area network) and the array of data 
analytics solutions. If we are to truly revolutionize water resource management, river monitoring 
needs to embrace the collation of large, integrated datasets in complete packages rather than 
considering layered approaches (Dean & Battin, 2024) that re-iterate long-standing collection 
protocols. For instance, IoT devices can incorporate software sensors (such as those based on 
machine learning) for predicting a range of water quality parameters based on the information 
from physical sensors (Ba-Alawi et  al., 2023), reducing monitoring costs. River ecosystem metab-
olism for example, which can be quantified routinely and continuously using optical measurements 
of DO, would be a core carbon cycle process measurement which has been found to respond 
consistently to environmental change with a high sensitivity, including detecting effects of river 
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restoration practices (Ferreira et  al., 2020), wastewater treatment upgrades (Arroita et  al., 2019) 
and stressor events such as sedimentation (Aspray et  al., 2017). When combined with a range 
of other sensor-based measurements, it offers significant potential for assessing the impacts of 
river system responses to human modification.

Surface and ground water quality monitoring is an established approach for determining river 
management objectives. There are numerous examples of statutory water quality monitoring 
programmes that target both below ground and surface water environments (e.g. EU Water 
Framework Directive), but monitoring to establish the status of the hyporheic zone is often 
limited or non-existent. This is an important gap in our knowledge as hyporheic zones are 
where surface and groundwater sources mix in the streambed creating strong physico-chemical 
gradients that influence a range of ecosystem functions, including nutrient cycling and biogeo-
chemical reactions (Lewandowski et  al., 2019). This is especially true when considering GHG 
exchange since the water column serves as the interface zone for exchange between the sedi-
mentary environment (where many reactions occur) to the atmosphere. High-frequency mea-
surements, such as temperature and DO, in the hyporheic zone are needed to integrate the 
heterogenous nature of the surface and subsurface environment (Klaar et  al., 2020) and reaction 
rates (Shelley et  al., 2017), thereby enabling quantification of biogeochemical processes in hypor-
heic zones including subsequent release of GHG from aquatic environments.

Reactive management responses to sensor data

Coupling telemetered sensor networks to data analytics solutions will be needed to enable the 
development of dynamic visualization dashboards, providing environmental managers with 
unprecedented insights into the real-time status of the whole river network. These sensor systems 
also present new opportunities for the democratization of catchment data with public-facing 
web-hosted applications. By engaging the public in the process, initiatives that improve insights 
into water quality by enhancing the level of detail and coverage in both space and time sup-
plement the data generated by scientists and government organizations. To achieve this, it is 
crucial to establish and distribute appropriate and consistent protocols to the public (Amador-Castro 
et  al., 2024). With additional potential for alerting citizen scientists, reliable information on 
water quality could be obtained quickly during events, increasing the spatiotemporal resolution 
and complementing the data produced by scientists and government institutions. As ML methods 
improve, the ability to upscale from localized data collection points in space, and to robustly 
infer system dynamics over time where data gaps exist (Segatto et  al., 2021), offers potential for 
significant improvements in both reactive and proactive management (Figure 2). Predictions of 
future conditions (forecasting) will become possible, similar to recent advances applied to standing 
freshwaters (Lofton et  al., 2023), enabling improved responses to future problems.

Sensor data can be used directly or aggregated to develop metrics for evaluating the ecological 
status of a river section. Such data will be used together with information on water quality and 
discharge to support decisions on water management, especially by elucidating links between 
water quality, ecosystem respiration, and carbon emission. For example, abstractors using river 
water for drinking water supply can identify contamination issues, such as high dissolved organic 
carbon (DOC) concentrations upstream, thus avoiding problems whereby disinfection byproducts 
make water unsuitable for human consumption (Valdivia-Garcia et  al., 2019). Other examples 
include water utilities and hydropower companies that withdraw, store, and redistribute water 
around river systems facing management challenges related to altered water quality (Gillespie 
et  al., 2015). Such approaches are already being tested, by diverting episodic events with elevated 
DOC in raw water sources away from water treatment works (Yorkshire Water, 2023). Although 
sensor networks can be costly to implement and maintain, wider operational cost-savings can 
be made by integrating forecasting into ML architecture to feed back to field sensors and sam-
plers to collect higher resolution data which would otherwise need manual intervention. For 
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example, enhanced data collection during contamination events could be used to support reg-
ulator investigations, and during storms where runoff peaks are often missed, for enhanced 
understanding of water quality and carbon cycle dynamics.

Regulators and decisionmakers need access to high-quality data to develop, monitor, and 
enforce catchment management plans and legislation, and identify areas where persistent prob-
lems highlight the need for restoration, such as through payment for ecosystem service or 
nature-based solution initiatives. Additionally, managers of agricultural basins, which are recog-
nized as a leading source of global water contamination (Liu et  al., 2022) need evidence to 
manage and reduce the effects of sediment loads and adsorbed contaminants originating from 
soil erosion, and the use of agrochemicals (nutrients, herbicides, pesticides), all of which can 
lead to elevated GHG emissions from rivers (Xiao et  al., 2021). By pinpointing river sections 
or sub-catchments suffering from stressors, prioritized and targeted management practices can 
meet multiple objectives to reduce emissions as part of the water-energy-food nexus in global 
resource systems.

Proactive management responses to sensor data

Proactive uses of sensor networks and analytics portals will benefit from long-term management 
planning through research and adaptive management. For example, experimental campaigns can 
be initiated to optimize management by modifying environmental flows from reservoirs (Figure 
2b). At present, reservoir operators release water to support downstream ecosystems, aiming to 
maintain the quantity and quality of water, based on the taxonomic or behavioral response of 
targeted biological groups, such as fish and invertebrates (Gillespie et  al., 2015). However, these 
flows can additionally modify downstream water quality, such as temperature, which is a strong 
control on carbon cycle processes (Yvon-Durocher et  al., 2011). The water release may also alter 
emissions from previously dry sediments (Pérez-Calpe et  al., 2022), and transfer dissolved GHG 
from in-reservoir processing (Shi et  al., 2023) to modify downstream emissions (Guérin et  al., 
2006). With the ability of sensor networks to provide rapid insights into downstream river 
ecosystem responses to changes in outflow volume, reservoir managers could more effectively 
balance water supply requirements with minimizing downstream ecosystem damage and emissions.

GHGs are known to be emitted from all freshwaters and make up a large component of the 
carbon flux (Butman et  al., 2016) but the lack of direct accounting for many of these systems, 

Figure 2. distributed sensor networks can be developed to support water resource management: (a) REACTIVE; a river catch-
ment with sensor locations denoted by numbers (1-7) spanning river channels. at t1, a stressor (e.g. organic pollution, sedimen-
tation) appears (upstream of location 7) leading to enhanced ecosystem respiration (er). real-time analytics and visualization 
allow pollutant tracking through t2-t4, enabling water abstraction (denoted by x) to be deactivated at t3. (b) PROACTIVE; a river 
catchment with a large headwater reservoir. hydrograph shows discharge (Q) scenarios f1-4. low flow f1 elevates er in the 
mainstem. with a regulatory target of er 1-2.5, water release in f2 modifies only the segment below the reservoir. excessive 
water release in f3 leads to overshoot of targets, allowing an optimal solution in f4 to tradeoff ecosystem recovery and water 
supply.
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despite studies showing their important role in carbon budgets both naturally and when mod-
ified, can now be remedied with enhanced environmental data collection. This work is vital to 
inform improved Life Cycle Analysis (LCA), for example when evaluating GHG emissions from 
infrastructure projects such as hydropower systems (Hertwich, 2013). However, most LCA anal-
yses currently ignore the role of the river itself, or are conducted only local to the development. 
Data on GHG emission from river networks need to be matched carefully with the spatio-temporal 
domain of the accounting methods, or vice-versa (Feng, 2005). Hence, investments in freshwater 
system monitoring infrastructure are needed from governments and businesses, otherwise strat-
egies to reach net-zero are likely to be hampered (Chen et  al., 2022). Following recent IPCC 
inventory refinements (IPCC, 2019), emissions from managed inland waters (e.g. farm ponds, 
reservoirs, and their outflows) now need to be quantified, which is adding some impetus to 
data collection, but for river systems it is also necessary to consider business operations effects 
“offsite” or “downstream,” such as lengths of watercourses influenced by upstream contaminant 
inputs (Hu et  al., 2018) or flow modifications (Shi et  al., 2023). The integration of sensor net-
works with ML models will be a key step toward meeting this need for whole catchment 
understanding and improved management.

Developing sensor networks to enhance river catchment management

Drivers of river carbon cycle processes

Understanding the drivers of carbon cycling in rivers is needed to predict the effects of mod-
ification by stressors such as warming, land use changes, and flow regulation (Bernhardt et  al., 
2018). Unlike terrestrial systems, carbon processing in rivers may not be synchronized with 
subsequent emissions of the produced GHG due to the dynamic nature and spatiotemporal 
variability in their physicochemical and biological characteristics (Dodds et  al., 2013). Continuous 
measurements of the key drivers of metabolism in rivers (e.g. hydrological conditions, light, 
temperature, organic matter availability, and nutrient concentrations) are needed therefore to 
compare and pinpoint their relative importance under different stressor regimes. Additionally, 
because metabolism and physicochemical drivers act at multiple spatial scales, from local (riparian 
vegetation, channel morphology) to regional (climate, topography), and vary along the river 
network (Alberts et  al., 2017), their combined impacts can only be examined by in-situ sensor 
networks and remotely-sensed data products. For example, the extra dimensionality offered by 
mobile robots with on-board sensors offers a potential solution to measuring spatial variation 
in such parameters along the course of a river.

River hydrology plays a significant role in shaping metabolism in rivers due to its control 
on ecosystem structure and functioning (Hosen et  al., 2019; Maavara et  al., 2023; VON Schiller 
et  al., 2008). In their study based on sensor data from 222 US rivers, Bernhardt et  al. (2022) 
found light and flow stability (and their interaction) to be key controls on primary production 
and respiration. Studies in temperate rivers have shown that, in addition to the obvious seasonal 
drivers of Gross Primary Production (GPP) (i.e. light availability, including canopy shading, and 
temperature), GPP’s dependence on flow should be considered in the context of river size (Hosen 
et  al., 2019). In large rivers, GPP is maximized at low flows, but reduced in high flows due to 
short water residence times and high turbidity obscuring light availability (Pathak et  al., 2022; 
Roberts et  al., 2007), while there is little flow-related change on GPP fluxes in smaller rivers 
(Hosen et  al., 2021; Maavara et  al., 2023). The dependence of ecosystem respiration (ER) on 
flow is somewhat less straightforward; low flows may reduce benthic production due to riverbed 
drying, but ER can increase after flow resumes, fueled by the accumulation of terrestrial organic 
matter on the dry riverbed (Acuña et  al., 2005). Maavara et  al. (2023) showed that ER was 
generally maximized in a temperate forested watershed close to median flows when water res-
idence times allowed ample time for carbon uptake to occur, with higher flows resulting in a 
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deeper and wider water column allowing for more DOC availability and more uptake due to 
larger water column volume.

Although light availability is a key driver of primary production (Savoy & Harvey, 2021), it 
is not straightforward to model GPP as other factors impact river autotrophs such as turbidity, 
vegetation, nutrient availability/stoichiometry, and shading (Behrenfeld & Falkowski, 1997). Light 
and temperature models can be developed for whole river networks by calibrating ML approaches 
from local sensor data and scaling the findings using remote sensing products such as land use/
cover classifications and digital elevation models for topographical information (Maavara et  al., 
2023; Segatto et  al., 2021). Drones with attached sensors could be utilized to build and validate 
such models with high spatial resolution data. Light availability can also modify temperature 
(Nebgen & Herrman, 2019), which has a stronger control on ER compared to GPP, indicating 
a possibility of higher CO2 emissions from rivers with climate warming (Demars et  al., 2011). 
However, the impact of warming on emissions is still less predictable compared to estimates 
derived from metabolic theory (Battin et  al., 2023). Incoming solar radiation can also mineralize 
DOC to inorganic forms and this must be considered alongside aquatic biological processes 
(Maavara et al., 2021). Indeed, recent research has shown that the magnitude of photo-mineralization 
during low flows as well as in winter often dramatically exceeds ER fluxes. Failing to consider 
year-round photo-mineralization fluxes may vastly underestimate the total magnitude of DOC 
uptake and CO2 production (Maavara et  al., 2023).

While GPP and ER are sensitive to nutrient loading, studies have yielded equivocal results 
regarding the impact of nutrient loading. Some studies have reported an increase in GPP and 
ER due to nitrogen and/or phosphorus loading (Kominoski et  al., 2018), whereas others have 
suggested that nutrient concentrations may be only secondary drivers due to the effects of light 
and food web structure (Dodds & Cole, 2007). Conversely, some studies have found evidence 
for reverse causality, where metabolism variations strongly control riverine nutrient dynamics 
(Jarvie et al., 2018; Pathak et al., 2022). The development of sensor networks, and sensor-deployment 
technologies, designed specifically to monitor river ecosystem carbon dynamics will therefore 
enable the relative importance of multivariate drivers of metabolic processes and their feedback 
to be understood in far more detail. Moreover, bidirectional relationships between water quality 
and biogeochemical cycles could eventually be explained and predicted through ML using both 
water quality information from sensors alongside next generation sequencing data focused on 
microbial communities and their biogeochemical processes (Díaz-Torres et  al., 2022; Fell et  al., 
2021) such as sulfur, nitrogen, phosphorus, and carbon metabolism.

Sensor networks for river system monitoring

Catchment management aimed at improving freshwater quality and reducing carbon emission 
is complicated due to multiple transport pathways that convey water and a wide range of con-
taminants into rivers (Khamis et  al., 2018). These include point sources such as industrial and 
municipal wastes, and non-point contributions such as agriculture. Identifying hotspot areas 
(both sources and impacts) is a critical first step in developing adequate intervention measures 
to improve water quality. However, monitoring is needed to evaluate the effects of these inter-
vention efforts, protect water quality, and meet regulations (Lofton et  al., 2023). Sensor networks 
provide the potential to meet these aims, but operational water quality monitoring programs 
globally are commonly based on fixed sampling points with periodic manual collection of "grab" 
samples and subsequent laboratory analysis for targeted parameters. Due to limitations of per-
sonnel, equipment, and access this type of sampling can provide good spatial snapshots of river 
conditions at the time of sampling (Meyer et  al., 2019) and manual water/gas samples are 
important to cross-validate sensor outputs, but is difficult to implement across entire catchments 
(Xing et  al., 2013). These sampling approaches also largely miss sporadic extreme events, such 
as contaminant releases or stormflows (Charriau et  al., 2016). In response to deficiencies in 
capturing event-based changes in river ecosystem properties, and with the emergence of more 
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reliable sensor technology, high-frequency monitoring using field deployable sensors and actuators 
is increasing (Bieroza et  al., 2023; Blaen et  al., 2016). Autonomous and remotely operated robotic 
surface vehicles with on-board sensors have increased the achievable spatial resolution of 
field-deployed water quality sensors (Lee et  al., 2023), and show great potential to improve 
detection of, and response to, short-term changes in river environments (Powers et  al., 2018). 
For example, localization of a pollution hotspot could trigger reactive behaviors, such as increas-
ing the resolution of data collection or tracking concentration gradients.

In-situ automated systems with multiple sensors that measure at high-frequency (typically 
15–60 min resolution but can vary depending on the application) can be used to deliver near 
real-time data (Meyer et  al., 2019; Singh et  al., 2022). Various sensors can be deployed to quan-
tify carbon cycling or to supply information on physicochemical drivers (Table 1). However, to 
advance catchment-scale carbon management, networks of these automated systems (i.e. sensor 
nodes (Figure 3)) are needed to pinpoint areas, such as those with high emissions, and to track 
event propagation through river basins (Zia et  al., 2013). Further potential for enhancing the 
dimensionality of environmental data is emerging from the development of autonomous robotic 
platforms to deploy sensors in parts of river systems that are difficult to access. The integration 
of these approaches and datasets presents a challenge, but these networks offer significant poten-
tial for advances in real-time understanding and mitigation of risk for river users, managers, 
decision-makers, and regulators (Jankowski et  al., 2021; O’Grady et  al., 2021).

With the decreasing footprint and power consumption of contemporary environmental sensors, 
they can now typically be integrated into multiparameter sensor platforms (i.e. sondes) to provide 
new opportunities for quantifying an array of carbon cycle processes. Miniaturization and lower 
power requirements have also increased the portability of environmental sensors for deployment 
onboard mobile robots, leading to the emergence of commercially available, remotely operated 

Table 1. multiple parameters can be measured routinely with high-frequency sensors to advance understanding and man-
agement of river carbon cycling and emissions.

sensor parameter relevance to freshwater C processes and emissions
example studies (citations in [] are 

open-source sensor examples)

cdom, tryptophan-like 
fluorescence, and absorption 
at 254 nm

measures fractions of organic matter and correlates 
with doC and total organic Carbon (toC) to 
understand carbon cycling

(spencer et  al., 2009)

Chlorophyll a and Phycocyanin represents processes of algae growth and primary 
production

(Chegoonian et  al., 2022, Peipoch & 
ensign, 2022)

Co2/Ch4 gas flux chambers Provides direct measurements of ghg emitted from 
water surfaces

(mcClure et  al., 2021, y. Zheng et  al., 
2022) [duc et  al., 2013, maher 
et  al., 2019]

dissolved Co2 / Ch4 dissolved ghg that can be potentially emitted (roberts et  al., 2007, Crawford et  al., 
2017) [Butturini & Fonollosa, 2022]

dissolved oxygen Primary production produces oxygen whilst 
respiration consumes it.

(aspray et  al., 2017, mejia et  al., 
2019, Jankowski et  al., 2021) 
[Chan et  al., 2021]

electrical conductivity hydrological tracer within open system calculations 
of river metabolism

(vieweg et  al., 2016) [méndez-Barroso 
et  al., 2020]

nitrate Primary production can serve as an important 
nitrate sink

(Jarvie et  al., 2018, murray et  al., 
2020)

ph significant control on most biological processes, 
and influences bicarbonate buffering system, 
thus dissolved Co2

(hong et  al., 2021, Klemme et  al., 
2022)

turbidity elevated turbidity/sedimentation can block sunlight 
to primary producers, reducing primary 
production

(honious et  al., 2022) (droujko et  al., 
2023)

water level indicates changes in flow, which influence the rates 
of primary production and respiration

(Bernhardt et  al., 2022) (Bresnahan 
et  al., 2023)

water temperature direct impact on gas solubility, metabolic rates 
(primary production, respiration, 
methanogenesis). warming can shift the balance 
toward more Co2 and Ch4 release rather than 
uptake into biomass

(demars et  al., 2011, yvon-durocher 
et  al., 2011) (hong et  al., 2021)
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and autonomous surface vehicles for environmental monitoring (HR Wallingford no date, YSI 
n.d.). However, probes for measuring dissolved CO2, CH4, and other proxies for organic matter 
(e.g. cDOM, UV254, etc.) remain poorly incorporated into carbon cycling estimations. Available 
sensors either require further development to improve their resolution and detection of multiple 
compounds such as emerging contaminants, or for dissolved gases atmospheric sensors must be 
deployed in bespoke water-tight, gas-permeable sleeves (Aho et  al., 2021; Bernal et  al., 2022) or 
direct measurements require combined chemical and optical measurements (Mendes et  al., 2019). 
Despite the increasing number of sensors that measure parameters related to carbon, most river 
studies estimating whole-stream metabolism have used DO time series (Hoellein et  al., 2013) 
but this method cannot resolve the change in respiration between day and night (Tromboni 
et  al., 2022). Conversion of oxygen data to CO2 production/uptake then relies on the use of 
respiratory quotients, with further work needed using concurrent O2 and CO2 measurements to 
understand sources of uncertainty, including organic matter composition and biological com-
munity influences (Bernal et  al., 2022) as well as processes such as denitrification and sulfate 
oxidation that produce CO2 without consuming DO.

Additional uncertainty must be minimized with appropriate corrections for reaeration of 
atmospheric-aquatic gas exchanges, using either tracer injections of inverse model fitting to 
sensor-derived dissolved gas time-series (Holtgrieve et  al., 2016). Novel biosensors based on 
microbial-fuel cells (MFC), such as two-electrode bioelectrochemical systems that use microbial 
respiration to convert chemical energy to electricity (Cui et  al., 2019), offer potential solutions 
to environmental sensors for aquatic respiration-related parameters. The MFC voltage or current 
response to aquatic respiration-related parameters (including DO, BOD, COD, and GHG) has 
been used as the basis for developing MFC-based biosensors (Wu et  al., 2019), including 

Figure 3. data measurement and integration can be used to advance assessments and management of river carbon dynamics 
and water quality. (a) sensor arrays along river catchments (locations 1-7) provide time-series of parameters (including carbon/
metabolism). real-time data from the suite of sensors can then be exchanged and processed together with other automated 
information sources such as weather forecasts, satellite data, and local measurements (white arrows). ml tools can be incorpo-
rated to (b) alert humanized control centers for proposed actions, or take actions automatically using alarm rationalization (dis-
tinguishing between alarms and alerts). the dimensionality of data collection at these nodes (c, d) can be augmented by 
deploying mobile/autonomous systems to capture information from river cross sections, as well as from the reaches between 
fixed sensor nodes. hierarchically nested structures of sensor arrays and other information sources can thus be used to advance 
optimization in water resource management.
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commercial devices (e.g. HABS-2000 Online BOD Analyser). MFC-based sensors have additional 
benefits including low cost, environmental sustainability, the possibility of self-powered operation, 
portability, and reduced response times in the order of minutes.

Implementation of sensor networks requires significant investment and a long-term strategy 
that takes into account design, construction, maintenance, and data analysis approaches. Sensor 
networks are rarely constructed in a single effort due to their costs and are instead constructed 
incrementally. Actual costs are highly dependent on the variables being measured and on location 
(including remoteness). The major costs associated with sensor networks include the construction 
of the infrastructure for protecting the sensors, the sensor themselves, their maintenance and 
calibration (including personnel and sensor replacements), data transmission, and data analysis. 
Infrastructure and personnel cost are highly dependent on the location globally. Individual 
sensors have different costs; for example, while traditional sensors for measuring DO, EC, and 
pH cost approximately $1–5K USD each, a nitrate sensor can cost $30–50K USD. Including 
measurements that use autonomous systems (Figure 3) will further increase costs by at least 
several $1000 USD. Despite the high costs of sensor and analysis tools, there is a constant flow 
of new low-cost systems for measuring water quality in rivers that will likely reduce the cost 
of sensor networks by an order of magnitude in the near future.

Affordable sensor networks

In general, the high cost of using standard commercial sensors for water quality and carbon 
cycling presents a significant limiting factor for implementing high spatio-temporal sensor net-
works. “Affordable” sensors/devices have a price of at least one order of magnitude lower than 
an off-the-shelf commercial product though. Developments in affordable, open-source computing 
hardware, such as microprocessors (e.g. Arduino) and single-board microcomputers (e.g. Raspberry 
Pi) could bridge the gap between low-cost sensing and data logging, with wireless real-time data 
transmitting (Chan et  al., 2021) enabling their use in a wide range of geographic locations and 
by a range of users, including citizen scientists, particularly as IoT networks become more 
widespread. While there are advantages to adopting citizen science methods for monitoring water 
quality, there are also several obstacles to overcome. Research indicates that the technology 
utilized for citizen science water quality monitoring should be cost-effective, easy to use, and 
capable of producing precise outcomes. In this context, IoT devices and sensors integrated with 
smartphones show potential as viable solutions (Amador-Castro et  al., 2024).

Currently, there are low-cost reported solutions for aquatic measurements of multiple param-
eters directly relevant to understanding C cycling in aquatic systems (Table 1, column 3). In 
addition, there are multiple affordable datalogging devices and wireless communication options 
relying on local-, cellular-, and satellite- based solutions (Levintal et  al., 2021). The field of 
affordable sensors is evolving rapidly, with new capabilities emerging constantly. For example, a 
compact multi-gas sensing platform for CO2, CH4, and N2O sub-ppm measurements is under 
development (Wastine et  al., 2022). Such a device can be used in automatic flux chambers to 
quantify, in real-time, emissions of all three main GHGs, from different locations within river 
catchments. Despite this, highly specialized equipment will increase monitoring costs, which is 
only feasible for limited initiatives. With respect to carbon cycling in rivers, there is still a need 
for affordable solutions for dissolved organic matter (DOM), nutrients, and dissolved gases other 
than O2 and CO2. The use of low-cost auto-samplers (Carvalho, 2020), portable spectrophotom-
eters (Laganovska et  al., 2020) or UV fluorescence spectroscopy (Yeshno et  al., 2021) can 
potentially provide relevant solutions for autonomous water sampling and analysis, thus meeting 
the need for high-resolution monitoring without excessive costs. However, given the increasing 
availability of low-cost solutions for deployment by a range of users, these sensors must be 
developed, deployed, and maintained in line with robust protocols to ensure data accuracy.

In many cases, affordable sensors have not been designed for use in aquatic systems. Installing 
or developing a sensor station (node) may take longer to implement than standard commercial 
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sensors and require different steps such as waterproofing, calibration, or processing of raw data, 
which can present barriers to non-technical users (Chan et  al., 2021). There are also major 
challenges with incorporating multiple sensors, possibly with different outputs, into a single and 
stable working system such as a monitoring robot. Another barrier is psychological, as affordable 
sensors can sometimes be wrongly considered less appropriate for rigorous scientific research 
(Chan et  al., 2021). Overcoming these challenges will lead to the development of low-cost sensor 
nodes, which will increase the affordability of deploying multiple nodes within an environment. 
This will also increase the spatial resolution, which is particularly valuable in areas where 
unpredictable extreme events are increasingly likely. Increasing accessibility of this technology, 
to economically developing nations will also be improved.

Mobile sensors and monitoring robots

Advances in mobile sensors and monitoring robots have increased the spatial resolution of 
environmental sensing, enabling capabilities such as detecting the location of pollution hotspots 
within water bodies (Powers et  al., 2018). Mobile sensors can be divided into those designed 
to travel passively within water currents (Gardner et  al., 2020; Marchant et  al., 2015), and those 
that are actively mobilized using robotic technology. Unmanned robots are a promising solution 
for sensing in hard-to-reach locations, enabling spatially continuous data collection and moni-
toring over longer distances and time periods.

Unmanned/unpiloted aerial vehicles (UAV), also known as aerial drones, can monitor large 
areas and use multi-spectral imaging and on-board probes and samplers to measure parameters 
such as algal blooms, temperature, and light. Small-scale, uncrewed surface vehicles/vessels (USV), 
also known as unmanned surface vehicles/vessels can be equipped with on-board bathymetric, 
light detection and ranging (LiDAR), GPS, and flow sensors, which enable correlation of geo-
graphical and hydrological parameters with water quality sensing (e.g. temperature, suspended 
solids concentration and hydrocarbon concentration (Martinez Vargas et  al., 2023)). In addition 
to carrying water quality sensors, samplers are also beginning to emerge with the ability to 
automate water sample collection and analysis on-board USVs, providing further potential for 
monitoring in-situ ecosystem processes (e.g. biochemical oxygen demand for respiration) (Fornai 
et  al., 2012; Shabani et  al., 2021). The availability of relatively low-cost autonomous underwater 
vehicles (AUV), USVs, and miniaturized environmental sensors has already led to the emergence 
of commercially available sensor-deployment robots (Lee et  al., 2023). These devices are typically 
remotely controlled, with the state-of-the-art ability to navigate autonomously due to advances 
in AI and ML and particularly deep learning (DL) methods (Qiao et  al., 2023).

Remaining obstacles to the use of robotic mobile sensing include legal constraints and physical 
limitations, such as achievable battery life. Autonomous navigation remains a challenge due to 
the high non-linearity and uncertainty of natural, and particularly, aquatic environments. As a 
result, AUVs are not yet well-developed for use in rivers, as the complex, low visibility envi-
ronment is difficult to navigate, and many communication and localization technologies (e.g. 
GPS) cannot be used underwater. However, USVs and AUVs are well established in marine 
monitoring, showing the potential of this technology to be applied within rivers with further 
development.

Integrating high-resolution sensor data with analytics advances

Sensor networks present opportunities to develop a new understanding of fundamental environ-
mental processes alongside applied management scenarios, by coupling high-resolution data 
sources with concurrent advances in statistical analysis and modeling. For example, 10 years ago, 
many studies using DO sensing technology typically comprised snapshots of metabolism on 
daily timescales at the river reach (∼10–100 m) scale (Demars et  al., 2015; Hoellein et  al., 2013), 
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sometimes with seasonal repeat sampling (VON Schiller et  al., 2008). With the development of 
more reliable and robust sensors including automatic cleaning (e.g. wipers, pressurized air), DO 
time-series data have been collected to calculate continuous metabolism (i.e. GPP, ER, NEP) 
over periods of months-years (Pathak et  al., 2022; Roberts et  al., 2007) illustrating how some 
rivers can switch temporally from sources to sinks of GHGs. The spatial distribution of sampling 
networks has also seen a recent shift from reach-based assessments toward efforts to quantify 
metabolism for catchments and whole river systems (Rodríguez-Castillo et  al., 2019; Segatto 
et  al., 2021, 2023). Large volumes of high-resolution water quality data are becoming available 
from continental-global scale networks (Bernhardt et  al., 2022). These ongoing increases in 
sensor data coverage offer the potential for significant improvements in pinpointing key drivers 
and constraints of aquatic ecosystem health, such as temperature, light, nutrients, and discharge 
(Bernhardt et  al., 2018) enabling improved decision-making and more strategic intervention 
efforts.

Modeling approaches

River DOM processing is influenced by multiple dynamic drivers that often respond non-linearly 
to hydro-climatological events across catchments, such as floods, drought, and warming (Battin 
et  al., 2023). In the past, modeling of DOM, carbon and nutrient reaction, and transport through 
river networks was hindered by the lack of high-resolution hydrology and hydrography data 
products at watershed, national, and global scales. As a result, models were typically limited to 
specific water body types (e.g. lakes only, river reaches/segments only) or grouped catchments 
where output could not be discretized in such a way to allow for spatiotemporal trends to be 
identified. The intersection of sensor technology, river models, and ML advances presents new 
opportunities for aquatic scientists and managers to develop digital representations of river 
systems (aka digital twins) to enhance aquatic science and management.

Increasing volumes of sensor data have enabled the expansion of metabolism estimation from 
the river reach scale to the network scale (Figure 4) using a range of model methods, including 
process-based (Segatto et  al., 2020), empirical (Rodríguez-Castillo et  al., 2019), ML (Segatto 
et  al., 2021), or a combination (Maavara et  al., 2023; Pathak et  al., 2022). As sensor networks 
can gather data on the physical and chemical properties of rivers, such as temperature, light 
intensity, DO, and nutrient concentrations, these data are usually used as input in process-based 
metabolism models to estimate reach-scale processes (Appling et  al., 2018; Demars et  al., 2015). 

Figure 4. Catchment-scale river metabolism estimates can now be developed from distributed sensor networks: (a) gPP mea-
sured in the 1200 km2 deva-Cares catchment, northern spain (rodríguez-Castillo et  al., 2019); (b) gPP measured in the 256 km2 
ybbs river, austria (segatto et  al., 2021). network outputs such as these can be developed as visualization tools to aid catchment 
management decision-making, with dynamic updating in near-real time from linked sensors, telecommunication systems, and 
computational models.
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Local metabolism rates can then be combined with information about the catchment environment 
to upscale to the river network scale, and as inputs for ML algorithms such as decision trees 
or neural networks.

In the past 5 years, high-resolution river network data products have become available at 
both national and global scales, including MERIT-Hydro and the associated GRADES dataset 
(Lin et  al., 2019; Yamazaki et  al., 2019) with 35 years of daily flow data from nearly 3 million 
river segments worldwide. These river network maps have enabled the further development of 
biogeochemical models that can be used alongside discrete location sensor data to quantify how 
nutrient and carbon sources, sinks, and transformations vary according to river size, flow, and 
season in large watershed networks. For example, Maavara et  al. (2023) used the US National 
Hydrology Dataset (NHD Plus HR) product to develop a DOC model for the Connecticut River 
watershed, NE USA (Figure 1). This model was calibrated with GPP, terrestrial DOC loading, 
photo-mineralization, and respiration datasets, derived partly from a sensor network at 10 loca-
tions across 1st-8th order rivers. These continuous DO measurements at 15-min intervals were 
used to estimate GPP and ER using a Markov Chain Monte Carlo algorithm, which was then 
scaled to estimate GPP across the entire watershed during all flows and seasons, by calibrating 
a random forest ML model (Appling et  al., 2018).

Efforts in improving process-based metabolism models have focused on expanding estimation 
to a more diverse set of river environments than previously possible, including estimation in 
river reaches with large discontinuities (e.g. flow and water quality regulation) or river reaches 
with significant transient storage (Pathak & Demars, 2023). Progress in this direction is valuable 
for reducing uncertainties in global estimates of freshwater carbon fluxes. Such process-based 
models could facilitate large-scale assessments of metabolism and its drivers across river envi-
ronments, when combined with ML methods (Appling et  al., 2018; Bernhardt et  al., 2022). 
Several other physical properties currently overlooked in field studies may significantly impact 
metabolism and will need to be incorporated into future network models, for example sediment 
movement (Risse-Buhl et  al., 2023; Schulz et  al., 2023) and hyporheic/groundwater interactions 
(Galloway et  al., 2019), which can have major impacts on ER.

Quantification of spatial and temporal dynamics of metabolism across river networks is 
important for estimating regional carbon emissions from rivers (Battin et  al., 2023). However, 
only a few studies have focused on metabolism estimation at the river network scale (Figure 
4). Rodríguez-Castillo et  al. (2019) utilized the spatial stream network model to identify the 
factors that govern spatial variations in river metabolism within the Deva-Cares catchment in 
northern Spain, highlighting benthic biomass, river channel properties, and human activities 
as important controlling factors. Segatto et  al. (2021, 2023) found that ER played a larger role 
in metabolic stability at the river network scale in the Ybbs River Austria, whereas GPP showed 
higher sensitivity to flow-induced disturbances and variations in light availability. Mejia et  al. 
(2019) used the BAyesian Single-station Estimation (Grace et  al., 2015) model to estimate 
metabolism over a year at ten sites across the Methow River network in Washington State, 
USA. Their findings indicated that metabolism timing may vary between sites within a river 
catchment due to the combined influence of local physicochemical conditions, despite having 
similar regional climates. Metabolism studies at the river network scale are admittedly 
data-intensive and these approaches need to be evaluated in river systems that are heavily 
polluted and where water quality often varies significantly over even short distances 
(Casillas-García et  al., 2021). In these systems the implications may be that more dense net-
works of fixed and robot-mounted sensors are required, alongside additional predictor datasets 
such as point-source input locations and land use; however, such information is increasingly 
becoming available with advances in sensor technology, remote sensing products, and modeling 
techniques including ML. Mobile robots can be used to both increase the range and spatial 
resolution of the data on which models are trained and validate predictive models by increasing 
empirical field data collection.
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Machine learning advances

AI is a field of study aimed at enabling machines to simulate human intelligence. Its origins 
can be traced back to the 1950s, when research primarily focused on automatic computers, 
self-improvement, and other related areas. ML is a subfield of AI, allowing machines to construct 
or improve computer programs automatically based on experience, rather than relying on explicit 
programming. Specifically, ML trains a regression or classification model through complex non-
linear mapping with adjustable parameters, based on a training data set. Several recent river 
carbon cycle studies have used random forest (RF) ML algorithms; for example, Maavara et  al. 
(2023) calibrated a RF that extrapolated GPP to almost 100,000 river reaches and lakes within 
the watershed using available predictor data such as flow, temperature, and canopy cover. Segatto 
et  al. (2021, 2023) also improved metabolic upscaling by incorporating a temporal dimension 
into predictions of metabolic regimes by training RFs using long-term, sensor-based estimates 
of GPP and ER in the Ybbs River catchment in Austria, as well as catchment physical and 
climate properties. However, RFs typically require large datasets and their transferability to 
systems for which they have not been trained can be problematic. DL is an additional branch 
of ML, distinguished by multiple layers of neurons in neural network architecture, which provide 
a higher ability to represent complex functions than non-deep neural networks (J. Zhang et  al. 
2021). Owing to the availability of large datasets and advancements in computational power, DL 
garnered significant attention in the 2010s, particularly due to its breakthrough in image rec-
ognition and natural language processing. Additionally, DL has emerged as a promising tool for 
research in domains such as carbon cycling and hydrology.

Accurate quantification of carbon emissions from aquatic systems remains constrained by 
scientific uncertainties, high complexity of physical and chemical process linkages such as 
non-stationarity, dynamism, and non-linearity. As a result, prediction and forecasting with 
process-driven methods can be inaccurate; for rivers, water temperature, and discharge data 
currently provide the best opportunities for forecasting, whereas research on near-term biological/
chemical predictions has advanced more quickly for lakes (McClure et  al., 2021). DL has been 
suggested as a potential means to overcome uncertainty and nonlinearity in river sciences (Shen, 
2018) and is now being applied in hydrologic predictions (water level, discharge (Xu et  al., 
2022)), regional rainfall-runoff linkages (J. Zhang et  al. 2021) and water quality dynamics (H. 
Zheng et  al., 2023). DL also has relevance in aquatic ecosystem prediction, including data mining 
and identifying outliers (Kim et  al., 2022). With respect to water quality data, DL methods have 
been shown to offer potential to predict N and P concentrations from physical data that can 
be collected more easily with sensors (e.g. pH, turbidity, temperature, DO, conductivity) (Ba-Alawi 
et  al., 2023). Moreover, DL can serve both as an auxiliary tool for process-driven methods, 
reducing computational loads in uncertainty analyses (Li et  al., 2020) and as a component of 
process-driven models, describing a process difficult to characterize mathematically (Huang 
et  al., 2022).

Physical models can now be embedded into DL models to improve performance and mitigate 
risks, by providing important supplementary information (Huang et  al., 2022; Reichstein et  al., 
2019). Physics-informed neural network (PINN) models incorporate the residual of physics 
principles (e.g. governing equations) as a regulation in loss functions to enable learning by 
penalizing poor predictions (Tartakovsky et  al., 2020). PINN is increasingly being applied in 
areas such as estimating water quantity and quality (Liang et  al., 2019). Therefore, the develop-
ment of physics-informed surrogate models that link DOM or DO concentrations and other 
water quality data with river flows could offer the potential for forecasting carbon emissions 
with greater accuracy and with improved consideration of uncertainty propagation.

Transfer learning (TL) developments offer additional potential for DL applications in water 
resource science and management. TL recognizes knowledge from a previous task and applies 
it to a new task (Pan & Yang, 2010). The previous task is usually an efficient ML model trained 
on large datasets, and then new tasks are related to the previous task but with smaller datasets. 
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TL methods in hydrology have focused mainly on data interpolation and prediction in areas 
where observed data are missing or unavailable. For example, Willard et  al. (2021) showed how 
lake water temperature can be predicted in areas without monitoring, and Zhou (2020) developed 
real-time predictions of river water quality applied to situations where data were missing (e.g. 
broken sensors). Promising applications to river carbon cycle understanding and management 
could include learning between catchments that differ in data availability (e.g. Figure 1), enabling 
knowledge gained from the better-studied catchment(s) to advance understanding of the 
less-studied system(s).

Despite numerous successful DL applications in aquatic sciences, challenges and risks remain 
in applying these approaches for aquatic carbon management. Overarching issues for all ML 
applications include the potential for sensor and data processing security breaches (Richards 
et  al., 2023) leading to risks for water security. A second issue concerns detection, as the accu-
racy of DL methods relies on the quantity of observational data. Insufficient data may prevent 
DL from achieving satisfactory precision (Cao et  al., 2022); however, even in developed countries 
with well-established infrastructures, the cost of obtaining a substantial volume of high-precision 
environmental monitoring data such as that needed for river carbon cycle estimation could 
hinder the application of DL in some locations (Richards et  al., 2023). Moreover, even water 
quality monitoring networks in developing countries are often limited by financial resources 
and technical capabilities and so must prioritize resource allocation. Third, DL methods work 
well only when training and test data are drawn from the same data feature space and distri-
bution (Pan & Yang, 2010). This implies that DL methods must be specifically designed and 
tailored for context. Due to the influence of factors such as geometry and land cover, aquatic 
systems often differ between watersheds, meaning models from other study areas can lead to 
errors in prediction and risks for decision-making. However, by incorporating explicit mecha-
nisms into the training process, DL models are beginning to emerge to overcome these issues, 
offering strong potential to advance further our understanding of river carbon cycling and 
emissions.

Conclusions

Global challenges associated with climate change adaptation and mitigation underpin the need 
for an accurate understanding of factors influencing carbon cycling at whole catchment scales. 
A primary barrier is the lack of water quality and emissions data, which are also key to improv-
ing water management by local-national business and regulatory organizations in river basins 
around the world, and to inform global policy developments by organizations such as the IPCC. 
The coincident need for data collection at higher resolution should be addressed by capitalizing 
on advances in distributed high-resolution sensor networks, combined with data analytic advances 
including ML methods. Combining high-resolution data and advanced analytics provide an 
opportunity to overcome challenges including resource limitation, access to remote areas, incon-
sistent monitoring practices, and/or data collection with insufficient spatial/temporal resolution. 
Benefits from expanding river carbon cycle process and emission understanding include closing 
knowledge gaps in international carbon accounting and facilitating more effective river catchment 
management.

While enhanced data collection and processing using in-situ sensors and advanced analytics 
can fill large gaps, logistical and financial constraints will still limit comprehensive sampling of 
complex spatial river networks at high-resolution. Therefore, advanced data analytics methods 
need to be developed concurrently to allow for scaling-up from point estimates in space to 
catchment scale, for filling in data gaps in time-series and for predicting water quality parameters 
for which robust and reliable sensors do not yet exist. DL methods have created significant 
opportunities and challenges in environmental research, although PINN and TL now provide a 
new basis to advance traditional DL methods. These methods are still in the research stage and 
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significant investment will be needed to ensure confidence in water resource management appli-
cations. Nevertheless, rapid developments in data collection and analysis, with reducing costs, 
present unprecedented new potential for monitoring and improving the status of freshwater 
systems worldwide. Capitalizing on these technological advances quickly will be vital to address 
intersecting global crises in freshwater availability, water quality, biodiversity and climate change 
while maintaining the array of critical ecosystem services that freshwaters provide to humanity.
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