Sweetman, A.K., Smith, A.J., de Jonge, D.S.W. et al. (13 more authors) (2024) Evidence of dark oxygen production at the abyssal seafloor. Nature Geoscience, 17 (8). pp. 737-739. ISSN 1752-0894
Abstract
Deep-seafloor organisms consume oxygen, which can be measured by in situ benthic chamber experiments. Here we report such experiments at the polymetallic nodule-covered abyssal seafloor in the Pacific Ocean in which oxygen increased over two days to more than three times the background concentration, which from ex situ incubations we attribute to the polymetallic nodules. Given high voltage potentials (up to 0.95 V) on nodule surfaces, we hypothesize that seawater electrolysis may contribute to this dark oxygen production.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Geography (Leeds) > River Basin Processes & Management (Leeds) The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Earth Surface Science Institute (ESSI) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 21 Aug 2024 10:48 |
Last Modified: | 21 Aug 2024 10:48 |
Status: | Published |
Publisher: | Nature Research |
Identification Number: | 10.1038/s41561-024-01480-8 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:216310 |