Rady, A.M., Guyer, D.E., Donis-González, I.R. et al. (2 more authors) (2020) A comparison of different optical instruments and machine learning techniques to identify sprouting activity in potatoes during storage. Journal of Food Measurement and Characterization, 14 (6). pp. 3565-3579. ISSN 2193-4126
Abstract
The quality of potato tubers is dependent on several attributes been maintained at appropriate levels during storage. One of these attributes is sprouting activity that is initiated from meristematic regions of the tubers (eyes). Sprouting activity is a major problem that contributes to reduced shelf life and elevated sugar content, which affects the marketability of seed tubers as well as fried products. This study compared the capabilities of three different optical systems (1: visible/near-infrared (Vis/NIR) interactance spectroscopy, 2: Vis/NIR hyperspectral imaging, 3: NIR transmittance) and machine learning methods to detect sprouting activity in potatoes based on the primordial leaf count (LC). The study was conducted on Frito Lay 1879 and Russet Norkotah cultivars stored at different temperatures and classification models were developed that considered both cultivars combined and classified the tubers as having either high or low sprouting activity. Measurements were performed on whole tubers and sliced samples to see the effect this would have on identifying sprouting activity. Sequential forward selection was applied for wavelength selection and the classification was carried out using K-nearest neighbor, partial least squares discriminant analysis, and soft independent modeling class analogy. The highest classification accuracy values obtained by the hyperspectral imaging system and was 87.5% and 90% for sliced and whole samples, respectively. Data fusion did not show classification improvement for whole tubers, whereas a 7.5% classification accuracy increase was illustrated for sliced samples. By investigating different optical techniques and machine learning methods, this study provides a first step toward developing a handheld optical device for early detection of sprouting activity, enabling advanced aid potato storage management.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Potatoes; Near-infrared; Hyperspectral imaging; Sprouting; Primordial leaf count; Classification; Machine learning; Sensor fusion |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Food Science and Nutrition (Leeds) > FSN Nutrition and Public Health (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 12 Jul 2024 09:29 |
Last Modified: | 12 Jul 2024 09:29 |
Status: | Published |
Publisher: | Springer Nature |
Identification Number: | 10.1007/s11694-020-00590-2 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:214623 |