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Abstract
The quality of potato tubers is dependent on several attributes been maintained at appropriate levels during storage. One 
of these attributes is sprouting activity that is initiated from meristematic regions of the tubers (eyes). Sprouting activ-
ity is a major problem that contributes to reduced shelf life and elevated sugar content, which affects the marketability of 
seed tubers as well as fried products. This study compared the capabilities of three different optical systems (1: visible/
near-infrared (Vis/NIR) interactance spectroscopy, 2: Vis/NIR hyperspectral imaging, 3: NIR transmittance) and machine 
learning methods to detect sprouting activity in potatoes based on the primordial leaf count (LC). The study was conducted 
on Frito Lay 1879 and Russet Norkotah cultivars stored at different temperatures and classification models were developed 
that considered both cultivars combined and classified the tubers as having either high or low sprouting activity. Measure-
ments were performed on whole tubers and sliced samples to see the effect this would have on identifying sprouting activity. 
Sequential forward selection was applied for wavelength selection and the classification was carried out using K-nearest 
neighbor, partial least squares discriminant analysis, and soft independent modeling class analogy. The highest classifica-
tion accuracy values obtained by the hyperspectral imaging system and was 87.5% and 90% for sliced and whole samples, 
respectively. Data fusion did not show classification improvement for whole tubers, whereas a 7.5% classification accuracy 
increase was illustrated for sliced samples. By investigating different optical techniques and machine learning methods, this 
study provides a first step toward developing a handheld optical device for early detection of sprouting activity, enabling 
advanced aid potato storage management.

Keywords  Potatoes · Near-infrared · Hyperspectral imaging · Sprouting · Primordial leaf count · Classification · Machine 
learning · Sensor fusion

Introduction

Effective storage of potato tubers is important to maintain 
quality attributes in fresh tubers. These attributes include 
specific gravity, carbohydrate content, glycoalkaloids con-
tent, flesh and skin color, and the absence of internal and 
external defects such as bruises, physiological disorders and 
sprouting [1]. Such attributes have significant effects on the 
final value of the tubers and the quality of any final potato 
products. Purchasers of fresh potatoes always look for tubers 
with no visual signs of defects. For the processed product 
markets, several quality factors should be preserved during 
storage including dry matter, sugar content, size, in addi-
tion to the absence of external damage [1]. Potato tubers, as 
with other fruits and vegetables, continue their biochemi-
cal activity, especially respiration, after harvest and during 
storage [2]. Potato tubers usually experience a dormancy 

 *	 Ahmed M. Rady 
	 ahmed.rady@nottingham.ac.uk

1	 Food, Water, Waste Research Group, Faculty 
of Engineering, University of Nottingham, University Park, 
Nottingham NG7 2RD, UK

2	 Department of Biosystems and Agricultural Engineering, 
Michigan State University, East Lansing, MI 48824, USA

3	 Department of Biosystems and Agricultural Engineering, 
University of California, Davis Campus, Oakland, CA 95616, 
USA

4	 Department of Plant, Soil, and Microbial Sciences, Michigan 
State University, East Lansing, MI 48824, USA

5	 Department of Agricultural and Biosystems Engineering, 
Alexandria University, Alexandria, Egypt

http://orcid.org/0000-0003-4278-3165
http://crossmark.crossref.org/dialog/?doi=10.1007/s11694-020-00590-2&domain=pdf


3566	 A. M. Rady et al.

1 3

period, which lasts 5 to 19 weeks after harvesting which is 
mainly dependent on the cultivar and storage conditions. 
During dormancy, tubers do not sprout, even with the avail-
ability of optimum sprouting conditions [3, 4]. Following 
dormancy and when tubers are subjected to relatively opti-
mal conditions for sprouting, including warmer temperatures 
(10–20 °C), sprouts [meristematic regions of the tubers 
(eyes)] grow at a low rate, which increases until one sprout 
is dominant over others [5]. Examples of a sprouted eye and 
leaf primordial in a potato tubers are shown in Fig. 1 [6]. 
Sprouting is related to physiological aging, a concept that 
was first introduced to study the effect of various physi-
ological stages of seed tubers on crop growth [7]. Later, it 
was stated that physiological age is “the physiological state 
of the tuber at any given time which is illustrated by the 
degree of visible sprout development” [8]. Potato sprout-
ing can be shown by the leaf primordia that are initiated 
from the tuber shoot apex [9]. Leaf primordia production 
in potato sprouts are usually signaled by the initiation of 
the inflorescence, which in turn is associated with a change 
in hormonal production [9]. In rare cases, the hormonal 
balance may be compromised and the inflorescence is not 
produced resulting in continued production of leaf primor-
dia. The number of leaf primordia within the developing 
sprouts is an indirect indication of tuber maturity or physi-
ological age [9]. The most important factor affecting the 

physiological age during storage is the temperature, which 
controls the biochemical activity in tubers after harvest [10]. 
Uncontrolled sprouting results in several drawbacks includ-
ing a reduction in the marketability of tubers and an increase 
of tuber physiological age [11]. Moreover, sprouting causes 
weight loss due to dehydration and respiration, increases lev-
els of glycoalkaloids (that are toxic), increases sugar levels 
(undesirable for frying), and decreases vitamin content [2]. 
Thus, uncontrolled sprouting decreases the end-use quality 
of potato tubers, and requires continuous monitoring during 
storage to determine when sprout suppressants should be 
applied. Factors that affect sprouting rate include cultivar, 
previous and current storage conditions, presence of damage 
and diseases, and degree of maturity [2].

Several chemical and non-chemical methods are used to 
inhibit sprouting of potato tubers during storage. Among 
chemical sprouting inhibitors, isopropyl N-phenylcarbamate 
(ICP, propham), isopropyl N-(3chlorophenyl) carbamate 
(CIPC, chloro-IPC, chloropropham), and maleic hydrazide 
(MH) are widely used around the world [12–14]. ICP and 
CIPC cannot be applied on seed potatoes, as their sprout-
ing inhibition is irreversible [2, 14]. Non-chemical sprout-
ing inhibitors involve low temperature storage (a common 
technique to store seed tubers), irradiation treatment, con-
trolled atmosphere storage, and developing cultivars that 
have longer dormancy periods [2, 9, 14]. The application of 

Fig. 1   a A tuber eye and its leaf scar and axillary bud, b Stolon attachment heel end, and cc rose end [6]
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non-chemical sprouting routines mainly depends on the end-
use, i.e., potato cultivars dedicated for processing should not 
be stored in low temperatures (< 4 °C) to avoid the increase 
of reducing sugar levels which results in browning color of 
tuber products after frying [15]. While sprouting inhibitors 
are effective in extending the shelf life of potatoes for up to 
10 months, they are expensive and should only be applied 
when the likelihood of sprouting is high [15]. Therefore, 
there is a need for measurement techniques that can rapidly 
detect primordial LC and therefore sprouting activity so that 
an effective sprouting suppressing strategy can be developed.

Spectroscopic systems have been used extensively for 
rapid and noninvasive monitoring of quality attributes in 
agricultural and food products. Ultraviolet (UV), visible 
(Vis), and near-infrared (NIR) spectroscopic techniques have 
been successfully developed into commercial technologies 
for sorting and grading fruits and vegetables based on shape, 
size, defect presence, and color. In the case of potatoes, sev-
eral studies have been conducted for using spectroscopic 
systems in evaluating various constituents including specific 
gravity [16], dry matter [16–18], and carbohydrates [19–22].

The evaluation of sprouting activity of potatoes has been 
studied using diffuse reflectance spectroscopy. Spectra in 
the range of 400–2500 nm were acquired from tubers of 
Superior and Atlantic cultivars over the 2004 and 2005 sea-
sons [23]. Laboratory measurements were conducted by 
weighing sprouts resulting from each tuber placed within 
a dark environment for 4 weeks at 18 °C, and expressed as 
the percent of weight of sprouts with respect to the fresh 
tuber weight [24]. Calibration models were cross-validated 
and the coefficient of determination (R2) was as high as 0.93 
with a tandard error of calibration using cross validation 
(SECV) of 0.40. The potential of using Vis/NIR spectro-
scopic and hyperspectral imaging for building predictive 
models for primordial leaf count (LC) for Frito Lay 1879 
(FL1879) and Russet Norkotah (R. Norkotah) cultivars has 
been conducted [19]. Results showed that the best regres-
sion model had a correlation coefficient (Root Mean Square 
Error of Prediction (RMSEP)) or R values of 0.89 (0.3285) 
and 0.77 (0.3560) for FL1879 and R. Norkotah, respectively.

In another study conducted by Garnett [25], an intensive 
investigation using spectroscopic systems was conducted 
to track the sprouting process of potato tubers in a real-
time. Several spectroscopic sensors were utilized with the 
following wavelengths: 500–1100 nm, 200–1100 nm, and 
900–2300 nm. It was deduced that the spectral data could 
be correlated with the sprouting process through the detec-
tion of chlorophyll produced on the tubers’ skin. The study 
also showed that the use of such spectroscopic systems in 
the range of 600–750 nm could effectively track the change 
in chlorophyll levels, which is linked to the early sprouting 
activity of tubers. Ji et al. [26] used a hyperspectral imaging 
system (400–1000 nm) to detect different defects in potatoes 

including sprouting. A Multiclass Support Vector Machine 
(MSVM) was chosen to classify tubers based on various 
defects. For sprouting, it was shown that sprouts could be 
identified with an accuracy of 90.9%. Multi-sensor data 
fusion is not a new technique and it has been extensively 
used to enhance the quality evaluation of food products. 
Fusion of Fourier-Transform mid-infrared (FT-MIR) and 
NIR sensors was implemented to enhance origin identifica-
tion of Panax notoginseng using ensemble methods and the 
classification accuracy values increased from 91.2% to 97.1 
with fusion methods [27]. Other examples included detect-
ing fish freshness during preservation using electronic nose 
(E-nose) and electronic tongue (E-tongue) fused data [28], 
fusing computer vision, NIR, and texture data to assess fish 
status from fresh to frozen-thawed [29], fusing computer 
vision, E-nose, and NIR to determine the total volatile basic 
nitrogen in pork [30], and combining E-nose, E-tongue, 
NIR, and FT-IR data to classify the botanical origin and 
evaluate adulteration of honey [31].

While previous studies showed good correlation between 
sprouting activity or primordial leaf count as an indicator for 
the sprouting versus electronic measurements, no studies 
investigated the classification of potatoes based on sprout-
ing activity during storage or investigated multi-sensor data 
fusion methods. Moreover, no generic classification models 
were developed that could be used to determine sprouting 
activity on any cultivar. Such models are valuable for help-
ing storage managers decide the best times for applying 
sprouting inhibitors to maintain sprouting levels that do not 
affect tuber end-use. Consequently, the objectives of this 
study were to:

1	 Compare the ability of three different spectroscopic tech-
niques (Vis/NIR spectroscopic, Vis/NIR hyperspectral 
imaging, and NIR transmittance) to identify sprouting 
activity for two different potatoes cultivars under differ-
ent storage conditions.

2	 Build generalized classification models to determine 
sprouting activity in potatoes from measurements from 
the different spectroscopic systems on whole tubers and 
sliced samples.

3	 Investigate how different classification methods, spectra 
pre-processing methods and sensor fusion techniques 
affects the performance of the classification models.

Materials and methods

Raw materials, sampling, and measurements 
of primordial leaf count

The experiments were conducted on cultivar or cv. Frito 
Lay 1879 (FL1879), commonly used for frying (chips and 
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French fries), and cv. Russet Norkotah (R. Norkotah), mainly 
used for baking and boiling Counts of leaf primordia were 
conducted by taking samples of meristematic tuber tis-
sue (eyes) from each tuber (n = 3) on the apical end of the 
tuber. The sprouts were stored in 5 ml Eppindorf tubes in 
an ethanol:acetone solution (1:1) until evaluation. Sprouts 
were mounted on slides and examined at 10x magnification 
under a dissecting Olympus microscope (model No. ZT40, 
Olympus Corp., Tokyo, Japan). Leaf initials were removed 
sequentially from the outside to inside of the sprout using 
a scalpel until the apical dome was exposed [9, 19]. The 
primordial leaf count per tuber was defined as the average 
of leaf primordium counts obtained for the three eyes. The 
samples were sliced form the stem end. Three slices, each 
12.7 mm thick were produced and the third slice was used 
for measurements. This slice was therefore 15.4 mm from 
the stem end of the tuber. [19]. There were 200 samples of 
each cultivar making a total of 400 tested tubers. While test-
ing whole tubers is beneficial for applications such as tuber 
sorting or grading there is also value in performing measure-
ments on sliced samples. Slices will not be affected by the 
tuber skin or any dirt on the external surface. In addition, 
there is often the need to measure key quality parameters 
of peeled and sliced potatoes during processing, e.g. chip 
production.

Spectroscopic measurement

Electronic measurements were conducted on whole tubers 
and sliced samples. Incident light was directed on the middle 
area of the tuber, which was approximately the center point 
of the longitudinal axis. Each tuber was scanned once with 
each spectroscopic system. Each sliced sample was scanned 
such that the light was directed towards the middle area of 
the slice. Three systems were used to acquire measurements; 
Vis/NIR spectroscopic system operating in interactance 

mode, Vis/NIR hyperspectral imaging, and NIR transmit-
tance systems. Table 1 shows a comparison between the 
spectroscopic systems used for measurements in this work.

Vis/NIR interactance system

The interactance system used in the experiments contained 
a spectrometer (model No. USB 4000, Ocean Optics, Inc., 
Dunedin, FL, USA) equipped with a 200 µm diameter fiber 
optic that has an optical resolution of 0.3 nm (full width half 
maximum or FWHM), a radiometric power supply with a 
maximum power of 250 W (model No. 68931, Oriel Inst., 
Irvine, CA, USA), and a light source (model No. 66881, 
Oriel Inst., Irvine, CA, USA) with the same maximum 
power and wavelength range of 446 to 1125 nm (Fig. 2a). 
More information on the system description and the calcula-
tion of the relative reflectance can be found on Rady et al. 
[20]. The system was used to scan whole tubers and sliced 
samples.

NIR transmittance system

The transmittance system used in this study and shown in 
Fig. 2b, compromises of a radiometric power supply that has 
a maximum power of 300 W (model No. 68931, Oriel Inst., 
Irvine, CA, USA), a light source that includes a quartzes 
tungsten halogen lamp (model No. 66881, Oriel Inst., 
Irvine, CA, USA), and an InGAas spectrometer (model No. 
NIR512L-1.7T1, Control Development, Inc., South Bend, 
IN, USA). The signals were acquired in the wavelength 
range of 900–1685 nm [19]. The relative transmittance was 
calculated using a reference disk made from Teflon® using 
the same technique used for calculating the relative inter-
actance. The reference disk had approximate diameter and 

Table 1   The main characteristics of the electronic systems used to scan the potato samples to determine primordial leaf count

Criterion Vis/NIR interactance NIR transmittance Vis/NIR hyperspectral imaging

Tested samples Sliced and whole Sliced Sliced and whole
Wavelength (nm) 446–1125 900–1685 400–1000
Sensor type Linear silicon CCD array InGaAs CCD camera
Integration or exposure time (ms) 10 (integration time) 8 (integration time) 2000 (exposure time)
Spectral resolution FWHM = 0.3 nm FWHM = 3.25 nm 2.8 nm
Spatial resolution 8 µm x 500 µm/pixel 25 µm × 500 µm/pixel < 9 µm
Measuring mode Interactance Transmittance Back scattering (reflectance)
Size Benchtop Benchtop Benchtop
Ease of use Simple Simple Relatively complicated
Data size 2D (wavelength vs. intensity) 2D (wavelength vs. intensity) Hypercube (3D) (wavelength, 

distance vs. intensity)
Feature extraction and processing time Relatively short Relatively short Relatively long
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Fig. 2   Schematic representation 
of a the visible/near-infrared 
interactance system, b the near/
infrared transmittance system, 
and c the visible/near-infrared 
hyperspectral imaging system 
(after Rady et al. 2019 with 
modification)
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thickness of 25 mm and 15 mm, respectively. Only sliced 
samples were scanned using the transmittance system as the 
spectra acquired from whole tubers contained a considerable 
amount of noise.

Vis/NIR hyperspectral imaging system

In this study, a hyperspectral imaging system was used to 
capture reflected, back-scattered light, under the reflectance 
mode, from whole tubers and sliced samples in the range 
of 400 to 1000 nm. The system consisted of a Hamamatsu 
dual mode cooled CCD camera (model No. C4880, Hama-
matsu Photonics, Hamamatsu, Japan), an imaging spectro-
graph directly attached to the CCD camera (ImSpector V10, 
Spectral Imaging Ltd., Oulu, Finland) along with a power 
supply control (model No. 69931, Oriel Instruments Irvine, 
CA, USA), a digital exposure controller (model No. 68945, 
Oriel Instruments, Irvine, CA, USA), and a light source 
(model No. 66881, Oriel Instruments, Irvine, CA, USA) 
containing a 250 W quartz tungsten halogen lamp and hav-
ing a lens material transmittance range of 350–2500 nm. A 
fiber optic cable coupled with a lens focusing assembly was 
used to deliver a broadband light beam of 1.5 mm diameter, 
arranged at a 15° angle away from the vertical axis, onto 
the middle of the sample which was 1.6 mm away from the 
scanning line (Fig. 2c). The imaging spectrograph acquired 
spectral information for each scanning line, which created a 
2-D image containing 256 × 256 pixels with a spatial resolu-
tion of 0.2 mm/pixel and a spectral resolution of 2.35 nm. 
The sample holder could move vertically with a motorized 
stage so that images could be recorded at different locations 
on the samples. The distance between two successive scans 
was set at 1 mm, and a total number of 10 images (scans) 
were acquired for each tuber, covering a 9 mm longitudinal 
distance along the sample. The acquisition time for each 
image was 200 ms, so the total time to scan one slice (10 
images) was 2 s [32].

Data analysis

Extraction of mean reflectance spectra (MRS) 
and wavelength selection

The average reflectance spectra for the hyperspectral sys-
tem were calculated using all wavelengths in the range of 
400–1000 nm. The arithmetic mean was calculated for the 
intensity values covering the spatial scattering distance of 
16 mm [32]. The spectra were then normalized by the Tef-
lon® reference and the mean reflectance spectra (MRS) were 
extracted for each sample [19]. The overall data analysis 
procedure applied in this study is shown in Fig. 3.

Reducing the number of variables, in multivariate analy-
sis, can overcome potential overfitting problems associated 
with relatively high dimensional data [33]. Therefore, in the 
case of spectroscopic systems, wavelength selection yields 
an improvement of correlation robustness and computation 
time without a considerable decrease in performance [34, 
35]. To extract the most effective wavelengths from the data, 
Sequential Forward Selection (SFS) was implemented. This 
method begins with an empty model and a new feature is 
added at each time and testing the importance of the added 
feature [36, 37]. If the added feature boosts the classifica-
tion performance, then it is kept in the model; Otherwise, 
the features is discarded. In this study, the most influen-
tial wavelengths were selected by applying the K-nearest 
Neighbor (Knn) classifier and the criterion was the classifi-
cation error. SFS was implemented using the statistical and 
machine learning MATLAB® Toolbox.

Classification of potato tubers based on primordial leaf 
count

Various machine learning techniques were applied in this 
study for the classification of potato tubers based on levels 
of primordial leaf count. K-nearest neighbor (Knn), Partial 
Least Squares Discriminant Analysis (PLS-DA), Artificial 
Neural Network (ANN), and Soft Independent Modeling of 
Class Analogy (SIMCA) were implemented for determin-
ing the classification models for potato samples based on 
the primordial leaf counts. Knn is a nonparametric classi-
fication method that requires no model to fit or classify the 
point or the sample. The distance between the point and the 
selected neighbors (K) is calculated and the sample is then 
classified to the nearest class or the class having more data 
points in the neighbor of the test point [38, 39]. Moreover, 
the Knn classifier is simple to implement and suitable for 
multicategory classification tasks [33]. The K value selected 
in this study was 5. PLS-DA is a linear regression classifica-
tion-based method that has the advantage over Partial Least 
Squares Regression (PLSR) technique of tolerance to col-
linear data, i.e. spectroscopic data, and noise reduction [34]. 
In the PLSR technique, the original data set is transformed 
into new space using the information on independent and 
dependent variables [33]. The advantage of PLSR is that it 
can handle data that is collinear such as spectroscopy data 
without having the problem of overfitting [33]. The PLS-DA 
classifier included 20 latent variables with no data scaling. 
The ANN classifier implemented in is a feed forward which 
is a nonlinear, supervised learning, adaptive classification 
technique [40]. In this study. The ANN classifier contained 
three layers, the first is the input layers containing the fea-
tures, a hidden layer with 50 neurons and a logarithmic 
transfer function and a scaled conjugate gradient backpropa-
gation function, and an output layer containing the classes. 
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The configuration of classification methods was based on 
preliminary analysis such that the parameters yielding the 
lowest classification error for each technique were chosen. 
In the case of the SIMCA method, Principal Component 
Analysis (PCA) was conducted individually on the features 
or predictors of each class and consequently each class might 
be described by different number of Principle Components 
(PC). Then a new object or sample was assigned to the class 
that its PCs were located closest too [41].

The spectral data was preprocessed to reduce noise 
resulting from various sources in each spectroscopic 
measurement system [42]. The preprocessing methods 
utilized in this study were mean centering, smoothing 
using first derivative, smoothing using second derivative, 
Standard Normal Variate (SNV), Multiplicative Scatter-
ing Correction (MSC), Savitzky-Golay, in addition to 
the raw data without preprocessing [33]. In the case of 
first or second derivative, a numerical differentiation was 
conducted to obtain the desired derivative. Assuming 

Xij_pre, and Xij_org represent the preprocessed and the 
original spectrum, respectively, located on the ith row and 
the jth column in the data matrix, the following equations 
can be used for each preprocessing method:

where is the mean of the jth column.

where Xi , and Si are the mean, and the standard deviation of 
the ith row, respectively.

where ai , and bi are constants obtained using Ordinary Least 
Squares (OLS) regression.

Xij_pre(mean−centered) = Xij_org − Xj

Xij_pre(SNV) =
Xij_org − Xi

Si

Xij_pre(MSC) =
Xij_org − ai

bi

Fig. 3   A schematic repre-
sentation of the data analysis 
procedure

Raw data (for sliced samples or whole tubers) 

VIS/NIR interactance 

 VIS/NIR hyperspectral imaging 

NIR transmittance 

Concatenate data from Frito Lay 1879 
and Russet Norkotah CVs. 

Wavelength selection using sequential methods 

Developing classification models using 
data from individual systems along 

with Knn, PLS-DA, and SIMCA  

Developing classification models using 
fused from different systems along with 

Knn, PLS-DA, and SIMCA  

Data preprocessing 
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where N is the, k is the order of the polynomial equation 
used for fitting, Ch are coefficients that depend on order of 
the polynomial equation (i.e. k).

In the case of Savizky–Golay, the 5th order polynomial 
(k = 5) and a window size of 25 (i.e. the number of Ch coef-
ficients is 25) were applied for smoothing. In the case of the 
LC data, the Box–Cox preprocessing method was chosen to 
obtain a uniform distribution before feeding the data into the 
classification algorithms to obtain the two classes mentioned 
later [33]. The data was divided into a training set (80%) 
and a testing set (20%). A 4-fold cross validation technique 
was conducted on the training set to increase the robustness 
of the classification models and avoid overfitting. Samples 
were divided into two classes based on the cut-off primordial 
count value which was chosen as the median value of the 
concatenated LC values from both cultivars and was 10.33. 
This value was chosen to create two balanced classes and it 
also represented relatively low LC values typically found in 
sprouts after harvest, and effectively a baseline [9]. Preproc-
essing methodologies were developed using MATLAB® 
software; Knn, and ANN classifiers were conducted using 
the statistical and machine learning MATLAB® Toolbox. In 
the case of PLS-DA, and SIMCA were implemented using 
the classification toolbox for MATLAB® created by Davide 
Ballabio (Milano Chemometrics and QSAR Research Group, 
University of Milano-Bicocca, Milan-Italy) [43]. Fusing 
data from spectroscopic and hyperspectral imaging systems 
was also conducted in this study. The selected wavelengths 
from both systems were concatenated for each sample and 
data in each wavelength (column) was normalized to be in 
the range of (− 1, 1) (i.e. dividing each value in the columns 
by the maximum value in the same column) to prevent any 
possible bias resulting from the different data scales.

Results and discussion

Constituent distribution and spectra for whole 
tubers

The distribution of primordial leaf count obtained, using 
the boxplot technique, for the data fused from both culti-
vars is shown in Fig. 4. Minimum, median, and maximum 
values (4.33 and 10.33, and 57.67) of LC with outlier val-
ues located above approximately 40. Some outliers with LC 
values above 40 were also present in the data. Minimum 
and median values (4.33 and 10.33) of LC with outlier val-
ues located above approximately 40. However, considering 
the purpose of the study as to develop generic classification 

Xij_pre(Savitzky−Golay) =
1

N

k
∑

h=−k

ChXij_org+h

models, outlier values were not eliminated in subsequent 
analysis steps.

The mean spectra obtained from the three optical sensors 
for whole tuber and sliced samples are shown in Fig. 5. Each 
sub figure shows two spectra, the first is the average of all 
spectra classified as high LC (LC > 10.33) and the second is 
the average of all spectra classified as low LC (LC ≤ 10.33). 
Only the spectra (features) in the range of 501.6–1004.2 nm 
were considered in the statistical analysis for interactance 
spectra as other signals outside that range had a very low 
signal to noise ratio. Therefore, the total number of features 
used for wavelengths selection were 2701 for the interact-
ance data. In the case of hyperspectral MSR data, the dif-
ference in the mean spectra was more noticeable beyond 
620 nm in the case of sliced samples than whole tubers 
which is possibly due to the skin on the whole tubers affect-
ing the signal attenuation. However, the interactance mode 
showed clearer separation of the two LC classes in the case 
of whole tubers than sliced samples. This could be attributed 
to signal saturation due to the detector been in contact with 
the sample. This close contact is less likely to occur with the 
whole tuber as it does not have a flat surface. It is worth stat-
ing that the shown spectra are resulting from concatenating 
the spectral data for two cultivars that differ in the skin color, 
and thickness as the color in R. Norkotah tend to be darker 
and the skin is thicker than those for the FL1879. Thus, 
it will be more beneficial to perform classification which 
includes both cultivars together as will result in a technique 
which is not applicable to only a single cultivar. The mean 
spectra of sliced samples obtained from the transmittance 
data also displayed a similar trend to those acquired from the 
interactance instrument. An example of applying different 
preprocessing techniques on hyperspectral imaging sample 
for sliced samples is shown in Fig. 6. 

Fig. 4   Distribution of primordial leaf count using boxplots for cv. 
FL1879 and cv. R. Norkotah potato cultivars
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Results of selected wavelengths (variables)

The number of wavelengths selected via the sequential 
forward selection algorithm for the three different spec-
troscopic systems is shown in Fig. 7. (Fig. 7a for sliced 
samples and Fig.  7b for whole tubers). Additionally, 
Table 2 shows the values of the selected wavelengths for 
sliced samples and whole tubers. In the case of sliced 
samples, the selected wavelengths from the interact-
ance mode (14) had a greater presence of NIR (11) than 
visible (3) regions of the electromagnetic spectrum. 

Hyperspectral imaging showed equal number of selected 
wavelengths (3) from both regions of the spectrum which 
illustrates the efficiency of the hyperspectral imaging 
data to explain the variation between samples with a rela-
tively few number of variables. The transmittance system 
resulted in a larger number of total selected wavelengths, 
17, distributed mainly above 1360 nm in the NIR region 
of the spectrum. In the case of whole tubers, the selected 
wavelengths calculated from the interactance data was 4 
which were all around 900 nm. This was much smaller 
than those calculated from the hyperspectral imaging (13) 

Fig. 5   Average spectra for the two classes of primordial leaf count for 
sliced samples and whole tubers resulting from a hyperspectral imag-
ing, sliced samples, b hyperspectral imaging, whole tubers, c inter-

actance, sliced samples, d interactance, whole tubers, and e transmit-
tance, sliced samples
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which were in the visible range (447–616 nm). Addition-
ally, the selected wavelengths followed a similar trend 
as shown in Fig. 5a–e where the larger the difference 
between the two classes, the less wavelengths needed to 
explain the variation between the samples. This trend was 
clearly shown with the wavelengths selected from all sen-
sors. It is generally better to achieve the optimal number 
of selected variables that can result in classification per-
formance similar to models which utilise all wavelengths. 
This is because it reduces the computational time required 
to train and validate the models and doesn’t require a 
large number of wavelengths which would increase the 
cost of the sensor required that works inline or in a rapid 
way for sprouting activity monitoring.

Results of classification of potato tubers based 
on leaf primordial levels

The numbers of samples in class 1 (LC < threshold) and 
class 2 (LC ≥ threshold) were 294 and 106, respectively. For 
comparison purpose, the classification results based on all 
wavelengths are shown in Table 3. Whereas, the best clas-
sification accuracy using selected wavelengths and obtained 
from various classification techniques for the models serving 
both cultivars and obtained from Vis/NIR interactance and 
Vis/NIR hyperspectral imaging, and NIR transmittance sys-
tems as well as fused data are presented in Table 4 for sliced 
samples, and whole tubers. In both tables, the best classifica-
tion accuracy values were shaded. For selected-wavelength 

Fig. 6   An example of applying different preprocessing methods on hyperspectral imaging data for potato sliced samples

Fig. 7   Selected wavelength for hyperspectral imaging, interactance spectroscopy, and transmittance spectroscopy for assessing leaf primordial 
counts for a sliced samples, and b whole tubers
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classification models, in the case of sliced samples, classifi-
cation accuracy values resulting from the test group showed 
that the hyperspectral imaging system along with the Knn 
method generally resulted in the best performance compared 
to the values obtained from other systems and classification 
techniques. In such case, the classification accuracy value 
was as high as 87.5%. In the case of interactance and trans-
mittance systems, the highest classification accuracy values 
were 82.5 for both systems and obtained using the PLS-
DA and SIMCA techniques, respectively. Data fused from 

different sensors showed some classification improvement 
only for sliced samples. Fusing data from (1) hyperspectral 
and interactance, (2) hyperspectral and transmittance, (3) 
interactance and transmittance, and (4) all systems resulted 
in accuracy values of 92.5, 95, 82.5, and 95%, respectively 
with all classification models obtained using the PLS-DA. 
Fused data contributed to explaining the variation between 
sliced samples especially when combining transmittance 
data with hyperspectral or interactance data which illustrates 
the benefit of using the wavelength ranges in the NIR region. 

Table 2   Selected wavelengths 
from several optical sensors 
for classifying sliced potato 
samples, and whole tubers 
based on primordial leaf count

Selected wavelengths for sliced samples Selected wavelengths for whole tubers

Hyperspectral 
imaging

Interactance system Transmittance 
system

Hyperspectral 
imaging

Interactance system

463.45 508.91532 900 447 930.8947
498.7 739.54278 1362.924 479.9 989.15652
550.4 741.0319 1380.96 486.95 990.64564
616.2 787.93918 1404.006 501.05 991.01792
867.65 806.1809 1406.01 512.8 –
912.3 850.10994 1413.024 519.85 –
914.65 865.00114 1427.052 522.2 –
935.8 879.89234 1463.124 533.95 –
– 934.43136 1466.13 576.25 –
– 947.27502 1498.194 583.3 –
– 977.4297 1516.23 585.65 –
– 995.67142 1528.254 604.45 –
– 996.9744 1574.346 616.2 –
– 997.16054 1594.386 – –
– – 1598.394 – –
– – 1616.43 – –
– – 1679.556 – –

Table 3   Classification 
performance for data obtained 
from individual as well as 
fused systems using all 
wavelengths acquired from 
Vis/NIR interactance, Vis/NIR 
hyperspectral imaging, and NIR 
transmittance for classifying 
potatoes based on primordial 
leaf count for sliced samples 
and whole tubers (shaded 
cells refer to the optimal 
classification performance)

Spectral data preprocessing and classifiers.
Non No preprocessing, SNV Standard normal variate, MSC Multiplicative signal correction, MC Mean 
center, Knn K-nearest neighbor, PLS-DA partial least squares discriminant analysis, SIMCA: soft independ-
ent modeling of class analogy, ANN feed forward artificial neural networks.

Sample type Optical system Preprocessing method, Classifier,
Training set classification rate (%)a

Testing set clas-
sification rate 
(%)

Sliced VIS/NIR hyperspectral Non, PLS-DA, 93.7 92.5
VIS/NIR interactance 1st Derv, SIMCA, 95.5 88.8
NIR transmittance MC, ANN, 82.5 85
Hyperspectral + interactance Non, PLS-DA, 96.2 91.3
Hyperspectral + transmittance Non, ANN, 87.5 86.3
Interactance + transmittance 1st Derv, ANN, 96.3 88.8
Hyperspectral + interact-

ance + transmittance
1st Derv, PLS-DA, 96.3 91.3

Whole VIS/NIR hyperspectral MC, Knn, 97.5 88.8
VIS/NIR interactance MC, Knn, 73.8 66.3
Hyperspectral + interactance Non, PLS-DA, 96.2 91.3
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The classification accuracies increased with by up to 7.5% 
when all systems were fused. Moreover, it is worth stating 
that among the preprocessing techniques applied, generally, 
the SNV, and MSC had a positive effect on classification 
accuracy. SNV provides a baseline correction which over-
comes the problem of having any artefacts or noise in the 
spectra due to any surrounding or uncontrolled conditions. 
Whereas, MSC helps reduce the effect of light scattering 
associated with reflectance and transmittance spectra [33].

In the case of whole tubers, similar classification results 
to those for sliced samples were obtained. Hyperspectral 
imaging data yielded close accuracy for whole tubers reach-
ing as high as 90% using the Knn technique and MSC. How-
ever, the models obtained from the interactance data did 
not perform as well, with the highest classification accuracy 
being 85% using ANN and MSC. Fusing data, however, was 
also effective in improving the efficiency of classification 
models. The highest classification accuracy obtained was 
86.3% using the PLS-DA method and applying the mean 
centering for preprocessing. Based on such results, it can 
be concluded that measurements on whole tubers was more 
promising compared with those conducted on sliced samples 
despite the higher classification for the latter case. The rea-
son for such conclusion is that the measurements conducted 
on whole are more suitable for those working in potato stor-
age facilities as they are non-destructive and require less 
sample preparation. Thus, with the classification results 
obtained, the rapid or inline measurements for early sprout-
ing signs could be possible using the hyperspectral imaging 
or the interactance spectroscopy with the advantage for the 
latter system of the considerable lower cost and shorter pro-
cessing time. Knn and PLS-DA both yielded the best clas-
sification accuracy values. The advantage of PLS-DA comes 
from the fact that it can handle collinear data and works 
first on transferring the original data using PLSR latent 
variables then build the classification models based on the 
obtained dependent values (LC) [33]. The advantage of Knn 
is it works better with when the number of samples in each 
class are similar, as is the case in this work [41]. The ANN 
classifiers in general showed close results to other classi-
fiers especially with having only 2 classes and more large 
number of samples compared with the number of variables 
which indeed results in better training to determine more 
accurate weights between the different network layers [44]. 
It is clear that the classification results based on selected 
wavelengths are close to or even better than those obtained 
using all wavelengths. In general, classification models for 
whole tubers (individual sensors) and sliced samples (fused 
sensors) showed better performance than those based on all 
wavelengths.

Results obtained in this work are comparative to those 
obtained from previous studies. The study conducted by 
Garnett [25], produced robust results in terms of detecting 

sprouting using spectral signature within the wavelengths 
range (600–750) associated with chlorophyll stimulation in 
the tuber skin. This current work also yielded some of the 
selected wavelengths in this range from the interactance and 
hyperspectral imaging systems. However, the referred study 
did not involve any classification models of tubers based on 
sprouting activity and the work does not seem to be practi-
cally suitable for online applications. Our study showed that 
it is possible to develop a low cost handheld technique for 
tracking the sprouting activity during storage. With the high 
efficiency of identifying early sprouting listed in the latter 
study, the tubers need to be manually placed such that that 
eye faces the detector. Also, our work statistically proved 
that the sprouting activity can be monitored for whole tubers 
using a limited number of wavelengths. Additionally, the 
classification performance obtained from this study is also 
in line with that produced by Ji et al. [26], where a classifica-
tion accuracy of 90.9% was deduced for sprouting. However, 
it is important to state that our study aimed mainly to illus-
trate the importance of deducing a one classification model 
that can serve more than one cultivar.

Conclusion

This study investigated the capability of three different 
spectroscopic systems (Transmittance, reflectance and 
hyperspectral) and machine learning methods for classify-
ing high or low levels of spouting activity on whole tubers 
and sliced sampled for two different cultivars of potatoes. 
The results showed that applying sequential forward selec-
tion followed by Knn or PLS-DA on hyperspectral data 
resulted in a classification accuracy of 90% for whole 
tubers with slightly lower values for the sliced samples 
(87.5%). This work has demonstrated the possibility of 
developing low cost technologies which only required a 
small number of wavelengths to successfully predict the 
sprouting activity in the tubers. The interactance system 
with only 4 wavelengths also produced reasonable classifi-
cation accuracy for whole tubers (85%) using ANN which 
could be improved with more data. Although the inter-
actance system resulted in lower classification accuracy 
than the hyperspectral system, the former is preferred for 
scanning whole tubers if used individually compared with 
the latter system taking the cost, simplicity, and shorter 
processing time for the interactance system. However, the 
current and future advancement of data acquisition hard-
ware will indeed enable set up a low cost and more power-
ful hyperspectral imaging device or a multispectral imag-
ing based on the results obtained from the hyperspectral 
imaging system in this study. Thus, the greater potential 
for successful industrial applications of such on agricul-
tural grading and sorting systems. Results also showed 
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that fused data enhanced the classification accuracy for 
sliced samples by up to 7.5% whereas no improvement 
was achieved for whole tubers. This study is suggested as 
pioneering in electronically assessing the sprouting sta-
tus of potato tubers during cold storage. Moreover, the 
application of the obtained classification results could be 
transferred to the potato industry by designing a handheld 
device to accurately and rapidly monitor physiological sta-
tus of tubers. Thus, supporting the feasibility of improved 
control of tuber sprouting activity through minimizing the 
application of chemical sprouting inhibitors at an appro-
priate physiological development stage. Consequently, 
the shelf life of tubers could be extended by preserving 
the desired quality status of tubers used either for table 
or processing purposes, leading to higher profit potential 
for growers and processors. It is worth stating that, more 
cultivars need to be tested to confirm the reproducibility 
and robustness of the results. In addition, a complementary 
study could be viable by testing the performance of several 
common sprouting inhibitors using the Vis/NIR interact-
ance and/or Vis/NIR hyperspectral systems. Performing 
such studies would validate the impact of the spectral tech-
niques on timing of application of the chemical inhibitors.
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