Helal, Y., Garcia, R. orcid.org/0000-0002-6363-8859, Imjai, T. et al. (3 more authors) (2024) Seismic behaviour of exterior RC beam-column joints repaired and strengthened using post-tensioned metal straps. Bulletin of Earthquake Engineering, 22 (6). pp. 3261-3286. ISSN 1570-761X
Abstract
Exterior beam-column joints are the most vulnerable part of substandard reinforced concrete (RC) buildings and are often the first to be damaged during earthquakes. This article presents an experimental and numerical investigation into the behaviour of exterior RC beam-column joints repaired and strengthened using Post-Tensioned Metal Straps (PTMS) for active confinement. The study focused on full-scale beam-column joints with an inadequate core zone detailing, thus emulating the deficiencies found in existing substandard RC buildings. Initially, four “bare” joints were subjected to cyclic tests to induce substantial damage within the core zone. Subsequently, the damaged core of the joints was repaired and recast with new concrete, and PTMS were applied to strengthen the joints, followed by another round of cyclic testing. The experimental findings were compared with predictions generated through established models from existing literature. The results revealed that ASCE/SEI 41–17 guidelines accurately predict the shear capacity of the bare joints. It is shown that recasting the core with new concrete significantly increased the joint’s shear capacity by up to 42% compared their bare counterparts. The use of PTMS strengthening further enhanced the capacity by up to 25%. A “scissors model” was employed for numerical simulations of both bare and PTMS-strengthened joints using DRAIN-2DX, which proved effective at predicting their nonlinear load-displacement envelope response. This article contributes towards the development of new cost-effective post-earthquake strengthening techniques for beam-column joints, with the potential to reduce the vulnerability of substandard RC buildings in developing countries.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2024 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Beam-column joints; Reinforced concrete; Seismic strengthening; Concrete repairs; Post-tensioned metal straps; Numerical modelling |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Civil and Structural Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 12 Apr 2024 09:16 |
Last Modified: | 29 Apr 2024 10:34 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1007/s10518-024-01904-1 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:211426 |