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Abstract

Exterior beam-column joints are the most vulnerable part of substandard reinforced con-

crete (RC) buildings and are often the first to be damaged during earthquakes. This article 
presents an experimental and numerical investigation into the behaviour of exterior RC 

beam-column joints repaired and strengthened using Post-Tensioned Metal Straps (PTMS) 
for active confinement. The study focused on full-scale beam-column joints with an inad-

equate core zone detailing, thus emulating the deficiencies found in existing substandard 
RC buildings. Initially, four “bare” joints were subjected to cyclic tests to induce sub-

stantial damage within the core zone. Subsequently, the damaged core of the joints was 
repaired and recast with new concrete, and PTMS were applied to strengthen the joints, 
followed by another round of cyclic testing. The experimental findings were compared 
with predictions generated through established models from existing literature. The results 
revealed that ASCE/SEI 41–17 guidelines accurately predict the shear capacity of the 
bare joints. It is shown that recasting the core with new concrete significantly increased 
the joint’s shear capacity by up to 42% compared their bare counterparts. The use of 
PTMS strengthening further enhanced the capacity by up to 25%. A “scissors model” 
was employed for numerical simulations of both bare and PTMS-strengthened joints us-

ing DRAIN-2DX, which proved effective at predicting their nonlinear load-displacement 
envelope response. This article contributes towards the development of new cost-effective 
post-earthquake strengthening techniques for beam-column joints, with the potential to 
reduce the vulnerability of substandard RC buildings in developing countries.

Keywords Beam-column joints · Reinforced concrete · Seismic strengthening · Concrete 

repairs · Post-tensioned metal straps · Numerical modelling
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1 Introduction

Numerous reinforced concrete (RC) buildings have suffered extensive damage or complete 
collapse during recent major earthquakes (e.g. Indonesia 2018, Haiti 2021, Afghanistan 
2022, Turkey-Syria 2023, Morocco 2023). Such devastating events resulted in significant 
financial and human losses. Many of the failures observed in these vulnerable RC buildings 
can be attributed to the inadequate detaling of beam-column joints. In particular, insufficient 
steel reinforcement in the core zone and inadequate shear capacity have been identified as 
significant factors contributing to these failures (Garcia et al. 2014a; Khan et al. 2018b; 

Sianko et al. 2020). Addressing these issues through local strengthening of substandard 
joints represents a practical solution to mitigate the vulnerability and potential losses from 
seismic events in developing countries.

Empirical vidence gathered from buildings damaged in past earthquakes underscores the 
high susceptibility of exterior joints to shear failures. This vulnerability is primarily attrib-

uted to the abrupt changes in geometry and to the limited confinement provided by adjacent 
elements. Consequently, various strengthening techniques have been proposed to increase 
the shear capacity of substandard exterior joints. One such method involves the application 
of stiffening steel plates (see Fig. 1a) that are securely affixed around joints to increase their 
shear capacity by up to 35% over unstrengthned control joints (Torabi et al. 2017). Diagonal 
haunches (Fig. 1b) were proven to increase the shear capacity of joints by 53-76% (Dang 
et al. 2017, Truong et al. 2017; Zabihi et al. 2018), and led to a more desirable beam hing-

ing failure. Moreover, the cumulative energy dissipated by joints with diagonal haunches 
was up to 4.48 times that of control joints (Dang et al. 2017) due to a change from a joint 

Fig. 1 Different strengthening techniques for exterior beam-column joints (a) stiffeneing steel plates, (b) 

single diagonal haunch, (c) FRP jackets, (d) RC jackets, (e) SFRC jackets, (f) cross bracing bars, (g) hair 

clip bars, and (h) Post-Tensioned Metal Straps
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shear failure (J-type) to a mixed flexural-shear failure (JB-type failure) (Kanchanadevi and 
Ramanjaneyulu 2021).

Utilising externally bonded Fibre Reinforced Polymer (FRP) jackets (see Fig. 1c) has 

proven to be higly effective for enhancing the capacity (by about 64-148%) and ductility (by 
about 51-74%) of substandard exterior joints when compared to control specimens (Singh 
et al. 2014; Mostofinejad and Akhlaghi 2017; Wang et al. 2019; Mostofinejad and Hajrasou-

liha 2019; Obaidat et al. 2019). Nonetheless, the initial cost of FRP materials can present a 
barrier to their wide application, particularly in developing countries where material costs 
account for most of the strengthening budget.

In addition to FRP jacketing, alternative methods have demonstrated their effective-

ness in enhancing the capacity, ductility, and energy dissipation of joints as rehabilitation 
methods. These methods include jacketing with RC (Fig. 1d), ultra-high-performance fibre 
reinforced concrete (UHPFRC), steel fibre-reinforced concrete (SFRC) (Fig. 1e), or steel 
fibre-reinforced geopolymer mortar (Sharma and Bansal 2019; Khan et al. 2018b; Ruano et 

al. 2014, Choudhury and Lascar 2021). These methods can increase the capacity of joints 
by up to 66%, ductility by up to 62% and and energy dissipation by up 113% over control 
joints. However, it should be noted that concrete or mortar jacketing can increase member 
size and mass the structure, potentially altering its dynamic properties (Bindhu et al. 2016, 
Kalogeropoulos et al. 2016).

Other techniques (Muthupriya et al. 2014; Bindhu and Jaya 2010) involve the use of 

diagonally-crossed bracing bars within the joint core (Fig. 1f), that can significantly 
increase the ductility of joints by up to 115%. Another technique by Rajagopal and Pra-

bavathy (2015) involves the use of mechanical anchorages with hair clips (Fig. 1g) with a 
90o bent to enhance capacity (by up to 12%) and ductility (by up to 37%) over bare joints. 
It should be noted that whilst these techniques can effectively enhance the shear capacicty 
and ductility of joints, they predominantly provide “passive confinement” to concrete. To 
date only limited studies (e.g. Huang et al. 2023) have investigated the effectiveness of pre-

stressing techniques in improving the behaviour of substandard beam-column joints. Such 
“active confinement” techniques hold potential for further enhancing the seismic perfor-
mance of these critical structural elements, thus preventing potential collapses during strong 
earthquakes. 

Research by Frangou et al. (1995) proposed a novel technique that uses Post Tensioned 
Metal Straps (PTMS) to strengthen concrete elements. In this technique, high-strength metal 
straps are wrapped around concrete components using a pneumatic tensioning tool, thus 
applying “active confinement” (Garcia et al. 2017; Imjai et al. 2020a, b). Moghaddam et al. 
(2010) demonstrated that PTMS confinement increased the strength of concrete cylinders 
by up to 25% over counterpart specimens with equivalent passive confinement. PTMS con-

finement was also effective at enhancing the strength and ductility of high-strength concrete 
(HSC) cylinders and columns tested in compression (Ma et al. 2015; Chin et al. 2018, Ma 
et al. 2018). PTMS have been effectively used to increase the capacity of shear-dominated 
RC beams by up to 63% (Setkit and Imjai 2019; Setkit et al. 2020, Abdullah 2023), as well 
as the bond strength of short spliced RC beams by up to 58% (Helal et al. 2016; Helal et 
al. 2016). Garcia et al. (2014a) used PTMS confinement to strengthen a substandard RC 
building subjected to shake-table tests. The PTMS strengthening significantly enhanced the 
seismic resistance of the building from a peak ground acceleration of PGA = 0.15 g to a 
PGA = 0.35 g. However, due to the global nature of shake table tests on whole structures, 
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the results did not provide sufficient insight into the behaviour of beam-column joints. Yang 
et al. (2019) investigated the post-fire shear behaviour of RC T-beams strengthened with 
prestressed steel straps. The results indicate that the post-fire shear capacity of strengthened 
T-beams was up to 138% higher compared to counterpart unstrengthened beams.

Although previous research has validated the effectiveness of the PTMS technique in 
enhancing the performance of various structural components, it is worth noting that no 
studies have explored the specific use of PTMS in improving the behavior of substandard 
RC beam-column joints. This represents an important research gap that warrants further 
investigation to assess the potential benefits and effectiveness of PTMS in addressing the 
specific challenges posed by these critical structural elements. This article addresses this 
critical research gap by investigating the seismic performance of exterior RC beam-column 
joints when strengthened with PTMS. In the initial stage, four substandard joints were inten-

tionally subjected to reverse cyclic loading to produce significant damage in the core zone. 
Subsequently, the damaged core of the joints was repaired/recast with new concrete, and 
the joints were then strengthened with PTMS to repeat the cyclic tests. The study’s find-

ings are presented and discussed in terms of observed damage, load-drift behaviour and 
cummulative energy dissipation. The contextualize the results, the experimental findings 
are compared to predictions generated according to established models in the literature. 
Furthermore, the joints are modelled in DRAIN-2DX software adopting a “scissors model” 
to calculate their nonlinear envelope response. This research holds significant implications 
for the development of new post-earthquake strengthening techniques for beam-column 
joints. Ultimately, these advancements have the potential to substantially reduce the vul-
nerability of substandard RC buildings in developing countries, contributing to enhanced 
seismic resilience and safety.

2 Experimental programme

2.1 Geometry and reinforcement of joints

Four susbtandard RC beam-column joint specimens were designed to simulate part of a 
connection between two floors in a multi-storey moment-resisting frame, but without a slab. 
The column height was 2700 mm with cross-section dimensions of 260 × 260 mm (Fig. 2a). 
The beam length was 1650 mm from the face of the column to the free end, with a cross-
section of 260 × 400 mm. The beam and column were longitudinally reinforced with bars of 
diameter ϕ16 mm, as shown in Fig. 2a. The longitudinal reinforcement of the column was 
spliced with a length of 400 mm (i.e. 25ϕ) just above the core zone. The beam was also 
reinforced longitudinally with ϕ16 mm bars. The cross-section dimensions and flexural/
shear reinforcement of the beam and columns of the tested joints were similar to those of 
a deficient RC building subjected to shake table tests by the authors (Garcia et al. 2010). 
Such building was originally designed with old European earthquake-resistant provisions 
from the 60’s and with no transverse shear reinforcement at the core zone of the joints, so 
as to ensure that a shear failure occurred at that location. The longitudinal reinforcement of 
the beam was anchored into the core with different lengths and bent lengths (types A, B or 
C), according to the detailing shown in Fig. 2b. These anchored lengths were insufficient 
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to develop the full yield strength of the beam bars, simulating inadequately designed joints 
found in seismically damaged structures.

The transverse reinforcement of both beam and column consisted of fully closed stirrups 
of diameter ϕ8 mm at 150 mm centres (Fig. 2a). This transeverse reinforcement was suffi-

cient to prevent shear failures in these elements. No transverse reinforcement was provided 
in the core zone of the joint in order to replicate typical substandard construction practices 
of buildings in developing countries. The lack of transverse shear reinforcement in the joint 
area was designed to ensure that a shear failure occurs in the core zone before the flexural 
capacity of the beam was attained. The theoretical beam flexural capacity was calculated 
to be 144 kNm, whereas the column flexural capacity was 72 kNm for a column axial 
load ratio of 11% (axial load of 250 kN, joint JA-3). The column-to-beam relative flexural 
strength ratio (ΣMRcol/ΣMRbeam) was 1.0, thus resulting in an inadequate strong beam-weak 
column strength hierarchy. The joints were identified with an ID in which the first letter 
“J” stands for “joint”, the second letter stands for the type of longitudinal beam detailing 
in the core (A, B, or C), and a number indicates the number of the specimen. The “PTMS” 
abbreviation in the ID indicates that the joint was repaired (recast core) and subsequently 
strengthened using PTMS.

2.2 Material properties

The joints were cast using three batches of premixed concrete. The mean concrete compres-

sive strength (fcm) was determined from tests on three 150 × 300 mm concrete cylinders 
according to BS EN 12390-3 (BSI 2009a). The indirect tensile splitting strength (fct) was 
obtained from tests on three 100 × 200 mm cylinders according to BS EN 12390-6 (BSI 
2009b). All cylinders were cast at the same time and cured together with the joints. Table 1 

summarises the mean values (average of three cylinders) and standard deviations (SD in 
square brackets) of the compressive and split tensile strengths obtained from the tests. The 

Fig. 2 Tested joints (a) geometry and reinforcement detailing, (b) detailing of longitudinal beam rein-

forcement into the core (units: mm)
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table also includes the properties of the concrete used to repair/recast the damaged core zone 
of the joints after the initial tests.

Due to difficulties in finding low-strength steel bars as those typically available in devel-
oping countries, the reinforcing steel of the joints consisted of ribbed bars grade S500. Com-

pared to low-strength steel bars, the use of deformed bars S500 was more critical because the 
joints could be subjected to higher force and bond demands. The yield and tensile strengths 
of the reinforcement were obtained from four bar coupons tested in direct tension. These 
values were found to be fy=630 MPa and fu=760 MPa for the 8 mm bar, and fy=555 MPa and 
fu=690 MPa for the 16 mm bar, respectively. The metal straps used to strengthen the joints 
had fy=930 and fu=1030 MPa, and a modulus of elasticity E = 202 GPa.

2.3 Test setup and instrumentation

The joints were tested with the column placed horizontally, as shown in Fig. 3. Pin supports 
at the ends of the column simulated the points of contraflexure of the column. A hydraulic 
jack was used to apply axial load on the column. The axial load on the column of joints 
JA-1, JB-1 and JC-1 was 150 kN (i.e. axial load ratio of 7-9%), whereas JA-3 was loaded 
with a load of 250 kN (axial load ratio 11%). Cyclic load was applied on the beam through 
a two-hinged actuator. The loading protocol consisted of a series of displacement-control 
steps (see Fig. 4) applied as drift ratio (DR) percentages. Each DR had three push-pull 
cycles applied at a rate of 0.4 mm/min. The initial tests on the bare joints were halted when 
the maximum load recorded in the test dropped by approximately 50%.

Before the initial tests, the joints were white-washed to facilitate the observation and 
marking of cracks. Sixteen potentiometers were then mounted on the joint area, lap splice 
region and potential beam hinging zone. This facilitated capturing deformations due to crack 
opening at the beam-column interfaces, as well as deformations within the core. Figure 5 

shows a typical bare joint with potentiometers. Ten Linear Variable Differential Transducers 
(LVDTs) measured deflections at the tip of the beam, supports, lateral displacements along 
the beam, and movement of the stiff frame used to test the joints.

Condition ID fcm (MPa) 
[SD]

fct (MPa) 
[SD]

Bare JA-1 22.5 [± 0.59] 2.6 
[± 0.14]

JA-3 31.4 [± 0.75] 2.4 
[± 0.06]

JB-1 28.6 [± 1.05] 2.5 
[± 0.02]

JC-1 28.6 [± 0.95] 2.5 
[± 0.05]

Repaired and 

PTMS-strengthened
JA-1PTMS 85.0a [± 0.20] 4.5 

[± 0.12]
JA-3PTMS 39.3 [± 0.83] 2.5 

[± 0.08]
JB-1PTMS 56.2 [± 0.57] 3.4 

[± 0.10]
JC-1PTMS 57.0 [± 1.00] 3.6 

[± 0.03]

Table 1 Concrete properties of 

beam-column joints

a Steel Fibre Reinforced 
Concrete (SFRC) mix
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2.4 Core repair/recast and PTMS strengthening strategy

As the initial tests damaged extensively the core, the damaged concrete was completely 
removed (Fig. 6a) and the core was repaired (recast) with new highly-workable concrete 
(Fig. 6b). After the new concrete set, the edges of the core and columns were rounded off to 
a radius of 20 mm using a grinder. This was done to prevent concentration of stresses and 
potential rupture of the external PTMS at sharp corners. It should be noted that whilst epoxy 
resin injection (e.g. Li et al. 2012; Sasmal et al. 2011; Beydokhti and Shariatmadar 2016) 

and concrete cover repairs (Hadi and Tran 2014; Esmaeeli et al. 2015) can be sufficient to 

Fig. 4 Cyclic loading protocol used to test the joints

 

Fig. 3 Typical bare beam-column joint and general setup
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repair slightly or moderately damaged joints, in the case of severe damage a core replace-

ment is often necessary (e.g. Ghobarah and Said 2001, 2002; Garcia et al. 2014a). It should 
be noted that in severely damaged RC buildings, the removal and recast of the concrete core 
would require the use of temporary shoring near the joint zone. Shoring can be removed 
after the recast core sets, thus allowing the installation of PTMS strengthening.

Three concrete mixes were used to recast the joints. The mixes were produced using 
the following proportions: Ordinary Portland Cement = 315 kg/m3, pulverised fly 
ash = 135 kg/m3, fine aggregate 0–4 mm = 7 35 kg/m3), 10 mm coarse aggregate = 935 kg/m3, 
and water = 180 kg/m3. Plasticiser was also added to the new highly-workable concrete 
mixes (2.5 kg/m3 for JA-3, JB-1 and JC-1; 5.0 kg/m3 for JA-1). The above mix design led to 
strengths of 39.3 to 57.0 MPa, as reported in Table 1. The new concrete of joint JA-1PTMS 
also had 50 kg/m3 of recycled tyre steel fibers. This produced a high-strength steel fibre 
reinforced concrete (SFRC) with fcm=85.0 MPa, as reported in Table 1. Short recycled steel 
fibres recovered from post-consumer tyres (Graeff et al. 2012; Alsaif et al. 2019) were used 
in an attempt to limit the crack width in the core during subsequent tests. The steel fibres 
had a mean diameter of 0.2 mm and a variable length (90% of the fibres had length in the 
range between 3 and 22 mm). The SFRC mix also contained 5 kg/m3 of superplasticiser to 

enhance workability. The core zones of joints JA -3PTMS, JC-1PTMS and JB-1PTMS were 

Fig. 6 Typical repair of core zone of joints after initial tests, joint JC-1 (a) view of core zone after removal 
of damaged concrete, and (b) view of core zone after repair/recast with new concrete

 

Fig. 5 Typical view of potenti-
ometers and some LVDTs, bare 
joint JC-1
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recast with normal highly-workable concrete with 2.5 kg/m3 of superplasticiser (fcm=39.3 
to 57.0 MPa in Table 1).

Following the repair/recast of the core with new concrete, all joints were strengthened 
with different PTMS strengthening strategies. The main strengthening goal was to increase 
the shear capacity of the joints. The metal straps were post-tensioned to approximately 
30–40% of their yield strength using pneumatic tools. The amount and layout of metal 
straps was selected based on the assumption that the metal straps can be treated as conven-

tional tensile reinforcement, according to the design methodology presented by Garcia et 
al. (2014a). Appendix A includes design calculations for joint JC-1PTMS, whereas Fig. 7a 

shows schematically the PTMS strengthening strategy adopted for this joint.

2.4.1 JA-1PTMS

This joint was strengthened using one layer of metal straps in the horizontal and vertical 
directions on each face of the joint, as shown in Fig. 8a. The straps extended 200 mm into 
the beam and columns away from the core zone. The tensioning in the straps was done from 
one end of the straps, whilst the other end was anchored with metal seals against metal 

Fig. 8 Strengthening strategy adopted for joint JA-1PTMS (a) schematic view, and (b) actual strength-

ened joint

 

Fig. 7 Strengthening strategy adopted for joint JC-1PTMS (a) schematic view, and (b) actual strengthed 

joint
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plates (50 × 60 × 6 mm thick). The plates were fixed to each face of the joint using six 10 mm 
diameter bolts inserted in holes prefilled with epoxy adhesive mortar. Figure 8b shows joint 
JA-1PTMS before the second test and typical instrumentation.

2.4.2 JC-1PTMS

In this joint, a ⊓-shaped steel plate (6 mm thick) was fixed on each face of the core to hold 
two layers of straps (Fig. 9a). The plates were fixed using six 10 mm diameter bolts inserted 
in holes prefilled with epoxy adhesive mortar. After the mortar set, the plates were partially 
tightened with nuts and washers leaving a small gap of approximately 1 mm between the 
plates and the concrete faces. This was necessary to enable the two-layer metal straps to 
pass through and be secured. Additional straps confined the column at each side of the core. 
Figure 9b shows joint JC-1PTMS.

2.4.3 JA-3PTMS and JB-1PTMS

The strengthening strategy of these joints (Fig. 10a) consisted of confining straps around the 
beam and column (see straps ① and ② in Fig. 10b). Additionally, two sets of diagonal straps 
were fixed around the joint core (straps ③ and ④ in Fig. 10b), and these reacted against three 
crank-shaped steel plates: two L-shaped plates on top of the column (Detail 1 in Fig. 10b), 
and one plate at the back of the core zone (Detail 2 in Fig. 10b). This was done to avoid 
drilling the joint to fix the steel bolts and PTMS were also installed on the column zone near 
the core to enhance the bond strength of the spliced bars. In addition, in joint JB-1PTMS, 
the straight longitudinal beam bars were welded to the column bars to prevent premature 
pullout failures. Figure 10c shows joint JB-1PTMS.

Fig. 9 Strengthening strategy adopted for joint JC-1PTMS (a) schematic view, and (b) actual strengthed 

joint
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Fig. 10 Strengthening strategy adopted for joints JA-3PTMS and JB-1PTMS (a) schematic view, (c) 

details of steel plates and diagonal configuration of straps, and (c) actual joint JB-1PTMS
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3 Test results and discussion

3.1 Damage on bare and PTMS-strengthened joints

The initial cycles (DR ± 0.5%) did not cause any evident cracking on the bare jonts. A sud-

den drop in capacity occurred when the first diagonal crack formed in the core at DR ± 1.5%. 
This drop occurred in the pull direction when the bottom beam bars were in tension. The 
load and DR at the onset of diagonal cracking were similar for all bare joints, regardless of 
the type of detailing in the longitudinal beam reinforcement. Diagonal cracks formed and 
widened in the core zone as the DR increased progressively during the tests. At large drift 
ratios (DR ± 4%), concrete spalling ocurred in the core zone. Figs. 11a-b show typical dam-

age observed in two joints after the initial tests on the bare joints. All bare joints failed due 
to excessive shear cracking in the core zone, accompanied by compressive failure of the 
diagonal struts in the core zone (J-type failure).

Damage in the PTMS-strengthened joints was more difficult to observe because the 
metal straps covered most of the core. However, at DR ± 1%, ± 1.5%, ± 2% and ± 3%, the 
cracks that formed during the initial tests on the bare joints re-opened, and new cracks 
formed at the old and new concrete interfaces. Figure 12a-d show the damage experienced 
by the PTMS-strengthened joints at the end of the tests after removing the metal straps. The 
PTMS-strengthened joints failed due to gradual shear cracking in the core accompanied by 
damage and cracking in the beam (JB-type failure), with the exception JA-1PTMS where 
the beam had no visible damage. All columns had some flexural cracks near the core, but 
there was no evidence of lap splice failure in the longitudinal bars.

3.2 Load-drift response of bare and PTMS-strengthened joints

Figure 13a compares the load-drift responses of joints JA-1 and JA-1PTMS. Due to an issue 
with the testing controls, joint JA-1 was subjected to only one loading cycle in the post-
peak stage. The capacities were + 40.4 kN (push direction) and − 45.1 kN (pull direction), 
corresponding to DR + 1.14% and DR -2.03%, respectively. Conversely, the capacities of 
joint JA-1PTMS were + 75.5 kN and − 65.6 kN in the push and pull directions, respectively, 
which occurred at a DR ± 2%. The tests were halted due to the rupture of the metal seals that 

Fig. 11 Typical damage of bare joints: (a) JA-3, and (b) JC-1
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were anchored on the steel plates. Table 2 summarises the load capacities and corresponding 

drift ratios of the bare and PTMS-strengthened joints in both loading directions.
The load-drift responses of joints JA-3 and JA-3PTMS are compared in Fig. 13b. The 

capacities of JA-3 were + 58.7 kN and − 51.9 kN at DR + 1.51% and − 1.52%, respectively. 
After a DR ± 4%, the load dropped below 50% of the maximum capacity. The response of 
joint JA-3PTMS shows that the capacities in the push and pull directions were + 75 kN and 
− 69 kN, respectively, at a DR ± 2%. Compared to the bare joint JA-3, JA-3PTMS had 30% 
and 20% higher capacity in the push and pull directions, respectively. However, premature 
debonding of the longitudinal beam bars of JA-3PTMS occurred, which hindered reaching 
higher loads in this joint.

The responses of joints JB-1 and JB-1PTMS are compared in Fig. 13c, whereas Fig. 13d 

compares the responses of JC-1 and JC-1PTMS. The results in these figures and the data in 
Table 2 confirm the effectiveness of the adopted core repair/recast and PTMS strengthening 
strategies at improving the capacity of these joints. For instance, compared to joint JB1, the 
capacity of JB-1PTMS was 72% and 95% higher in the push direction and pull directions, 
respectively (Fig. 13c). Similarly, the DR at maximum capacity increased by an average of 
150% considering both directions.

In comparison to JC1, JC-1PTMS had 87 kN and 64 kN capacities in both the push direc-

tion (+ 75%) and pull directions (+ 34%), as shown in Fig. 13d; Table 2. It should be noted 
that the different capacity between the push and pull directions of JC-1PTMS in Fig. 13d 

was due to a malfunction of the test equipment. Indeed, a sudden large displacement dur-

Fig. 12 Damage of PTMS-strengthened joints, (a) JA-1PTMS (b) JA-3PTMS (c) JB-1PTMS, and (d) 

JC-1PTMS
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ing the last cycle at DR = + 1.5% caused significant damage to the joint, thus affecting the 
results. The results in Figs 13b-d also show that the repair/recast and PTMS strengthening 
were effective at increasing the deformation capacity of some joints. This is particularly evi-
dent in JC-1PTMS, where the ultimate DR increased by approximately 50% from DR ± 4% 
to DR ± 6% in both push and pull directions. Overall, the experimental results indicate that 

Table 2 Maximum load capacities and corresponding drift ratios (DR) of tested joints
Joint JA-1 JA-3 JB-1 JC-1
Direction F (kN) DR (%) F (kN) DR (%) F (kN) DR (%) F (kN) DR (%)
Push (+) 40.4 1.14 55.7 1.51 50.8 1.54 49.6 1.97
Pull (-) -45.1 -2.03 -51.9 -1.52 -41.1 -0.64 -47.7 -1.44
Joint JA-1PTMS JA-3PTMS JB-1PTMS JC-1PTMS

Direction F (kN) DR (%) F(kN) DR (%) F (kN) DR (%) F (kN) DR (%)
Push (+) 75.5 2.00 75 2.08 87.4 2.90 86.7 3.34
Increase 87% 76% 35% 38% 72% 89% 75% 69%
Pull (-) -65.6 -2.00 -69 -2.01 -80 -2.00 -64.1 -2.92
Increase 45% 1% 33% 32% 95% 211% 34% 41%

Fig. 13 Load-drift response of bare and PTMS-strengthened joints (a) JA-1 & JA-1PTMS, (b) JA-3 & 
JA-3PTMS, (c) JB-1 & JB-1PTMS, and (d) JC-1 & JC-1PTMS
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the capacity of the bare joints was approximately 50% that of their theoretical plastic capac-

ity. Following the repair/recast and PTMS strengthening, joint JB-1PTMS showed the high-

est capacity enhancement of all tested joints. This suggests that the welding used in this joint 
prevented the premature debonding observed in the longitudinal beam bars of JA-3PTMS. 
Joint JA-1PTMS and JA-3PTMS had similar performance despite the difference in concrete 
quality and axial load.

3.3 Cumulative energy

Figs. 14a-b compare the cumulative energy dissipated by the bare and PTMS-strengthened 
joints at different DRs. The cumulative energy was calculated by summing up the energy 
dissipated in the load-displacement cycles throughout the full test. Since it was not possible 
to calculate the energy of joint JA-1 due to issues during testing, the results are not presented 
in Fig. 14a. The results in Fig. 14a show that most of the energy absorption occurred during 
the first cycle of the last two DRs (± 3% and ± 4%), when large deformations and severe loss 
in stiffness took place. By the end of the test (DRs ± 4%) and despite the different detailing 
of reinforcement at the core, joints JA-3, JB-1 and JC-1 had dissipated similar cumulative 
energies of 9.6 kNm, 9.2 kNm and 8.0 kNm, respectively. Conversely, Fig. 14b shows that 
the PTMS-strengthened joints JA-3PTMS, JB-1PTMS and JC-1 PTMS dissipated the much 
high cumulative energies of 26.3 kNm, 34.0 kNm and 15.7 kNm at DR of ± 6%, respec-

tively. It should be noted that the bare and PTMS-strengthened joints dissipated similar 
amounts of energy up to a DR of ± 2% (i.e. before wide shear cracks developed in the core 
zone). It is also evident that the energy dissipation of the PTMS-strengthened after that DR 
increased significantly as cracking and damage progressed. However, at a common DR of 
± 4%, the PTMS-strengthned joints dissipated up to 2.7 times more energy compared to bare 
counterparts. The test results also indicate that, at the end of the tests, the PTMS-strengthed 
joints dissipated up to 3.7 times the energy dissipated by the bare joint (compare JB-1PTMS 
vs. JB-1). This indicates that the repair and PTMS strengthening strategies were very effec-

tive at improving the energy dissipation capacity of the originally substandard joints.

Fig. 14 Cumulative energy dissipated by (a) bare joints, and (b) PTMS-strengthened joints
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3.4 Contributions of repair/recast and PTMS to total joint shear strength

The results reported in Table 1 include the combined contributions of the repair/recast core 
and the PTMS strengthening. To calculate the actual contribution of the PTMS strengthen-

ing to the shear capacity of the joints, it is necessary to decouple the effect of the core repair/
recast. Table 3 compares the experimental horizontal shear stress υj,max  (calculated using 

Eq. 1) and the corresponding shear strength factor γ (where γ=υj,max/
√
fcm ) of the tested 

joints. Table 3 also includes the factor γ calculated according to the approaches proposed by 
Hassan for J-type failure ‘γHJ’ (Hassan 2011), Park and Mosalam ‘γPM’ (Park and Mosalam 
2012, 2013), and ASCE/SEI 41−17 ‘γA41’ (ASCE 2017). Note that the values γ reported in 

Table 3 are the average of the push and pull directions.

 
υjh =

Vjh

/

Aj
 (1)

where Vjh  is the maximum shear force resisted by the joint; and Aj  is the area of the joint 

core.
Table 3 shows that the bare joints have very similar shear strength factors γ ranging from 

0.49 to 0.52. The results also indicate that ASCE/SEI 41−17 predicts accurately (within 
a 5% accuracy) the actual shear capacity of the substandard bare joints (see factor γA41). 
Therefore, a value γ = 0.5 as is used in this study to calculate the shear capacity of the recast 
core in the PTMS-strengthened joints (see values υj, core in Table 3). Accordingly, the contri-
bution of the PTMS strengthening to the total shear capacity of a PTMS-strengthened joint 
is calculated as υj, PTMS = υj, max- υj, core. It should be noted that past research (e.g. Garcia et 
al. 2014a; Hung et al. 2022) also found that ASCE/SEI 41−17 was accurate at prediciting 
the shear capacity of other substandard beam-column joints. Therefore, ASCE 41−17 can 
be used to provide conservative predictions of the capacity of substandard joints as those 
tested in this study.

The last two columns of Table 3 show the decoupled shear capacity enhancements attrib-

uted to the repair/recast core (Δυj, core) and PTMS strengthening (Δυj, PTMS) of the PTMS-
strengthened joints. The results indicate that the repair/recast of the core zone was very 
effective at increasing the shear capacity of the joints by up to 42% (JB-1PTMS), while the 
PTMS strengthening increased further the capacity by up to 25% (JA-3PTMS). Based on 
these results, it is evident that the strengthening strategies adopted for joints JA-3PTMS and 
JB-1PTMS were more effective in achieving the strengthening goal. Also, additional inter-

Table 3 Shear strength contributions of core repair/recast and PTMS strengthening
ID υj, max (MPa) γ γHJ γPM γA41 υj, core (MPa υj, PTMS (MPa) Δυj, core (%) Δυj, PTMS (%)
JA-1 2.32 0.49 0.75 1.19 0.5 - - - -

JA-3 2.92 0.52 0.75 1.00 0.5 - - - -

JB-1 2.69 0.50 0.75 1.05 0.5 - - - -

JC-1 2.64 0.49 0.75 1.05 0.5 - - - -

JA-

PTMS
3.91 - - - - 3.13 0.78 + 16 + 25

JB-
PTMS

4.55 - - - - 3.75 0.80 + 42 + 21

JC-

PTMS
4.10 - - - - 3.77 0.32 0 + 9
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ventions such as welding of longitudinal beam bars at the core zone of JB-1PTMS proved 
very effective in preventing premature bond failure of short anchored reinforcement.

4 Modelling of bare and ptms-strengthend beam-column joints

4.1 General geometry and scissors model

In this study, DRAIN-2DX software was used to model the joints and to provide further 
insight into their behaviour. Past studies have demonstrated the effectiveness of DRAIN-
2DX at simulating the nonlinear behaviour of structures (e.g. Seif-eddine et al. 2019, Elfath 
et al. 2021). Fig. 15a shows the model of a typical joint in DRAIN-2DX. A pinned support 
at the bottom of the column restrained vertical and horizontal movements. Axial column 
shortening was allowed through a top vertical roller. Outside the core zone, the beam and 
column were modelled using Element15 (E15) that simulates concrete and steel bars as dis-

crete fibres. Element15 is a distributed plasticity element that considers the P-M interaction 
automatically. Fig. 15a shows the cross sections of the discretised beam and column. The 
experimentally determined material properties were used for the concrete and steel fibres.

In this study, a “scissors model” is used to model the panel zone. The model consists of 
a rotational spring with rigid links extending along the core dimensions. Past studies used a 
similar approach to simulate the behaviour of beam-column joints (e.g. Sharma et al. 2011; 

Birely et al. 2012; Amirsardari et al. 2019 Kolozvari et al. 2023). As shown in Fig. 15b, 
the core zone was modelled using two rigid link elements spanning along the core dimen-

sions, and one nonlinear rotational spring embedded in the connecting node of the rigid 
elements. Two translational nonlinear springs were embedded at the column/core interfaces. 

Fig. 15 DRAIN-2DX model (a) beam-column joint model, and (b) core zone “scissors model”
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The beam moment (Mb) vs. shear deformation of joint (∆ j) relationship obtained from the 

tests was used to model the rotational spring. Likewise, the joint horizontal shear force (V j) 

vs. shear deformation (∆c = ∆ j·hb / 2, where hb is the beam hight) relationship was used to 
model the column portion of the joint. Accordingly, the Mb- ∆ j and V j - ∆c relationships 

were extracted from the experimental results of each bare and PTMS-strengthened joint 
tested in this study, and such values were used as inputs in the rotational and translational 
springs shown in Fig. 15b. As a result, the contribution of the different PTMS strengthening 
strategies is implicitly accounted for in the input values. Element02 (E02) with a large value 
of stiffness was adopted to model the rigid joint elements of the scissors model.

4.2 Bar slippage deformations

Slip deformations are included in the model as moment-rotation relationships. To achieve 
this, slip deformations were first transformed into rotations at the beam or joint interface. 
The cross-section rotation due to bar slippage was assumed to occur about the neutral axis, 
as shown in Fig. 16. Accordingly, the slip rotation was calculated as the bar slip (measured 
by LVDTs during the tests) divided by the distance between the neutral axis and the slipping 
bar (i.e. the width of the open crack), as defined by Eq. 2:

 
θslip =

Slip

d− c
 (2)

Further details about the approach adopted in the modelling of the bare and PTMS-strength-

ened joints tested in this study can be found in Helal (2012).

Fig. 16 Calculations of rotations 

due to bar slippage
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After modelling the bare and PTMS-strengthened joints, nonlinear analyses were per-
formed to obtain the corresponding nonlinear load-displacement envelope response, as 
discussed in the next section. It should be noted the envelope is considered in this study 
because current guidelines (e.g. ASCE/SEI 41−17) also use envelope responses to model 
the nonlinear behaviour of beam-column joints.

5 Results & discussion

5.1 Load-displacement envelope response

Figure 17a-c compare the experimental load-displacement response of the bare joints and 

the numerical results from DRAIN-2DX. The results indicate that the scissors model pre-

dicted the first (shear) cracking, initial stiffness, peak strength and post-peak degradation 
with reasonable accuracy. Likewise, Fig. 18a-c compare the experimental load-displace-

ment response of the bare joints and the numerical results from DRAIN-2DX. The results 
show that, in general, the scissors model also captured well the load-displacement response 
of the PTMS-strengthened joints. The scissors model adequately predicts that all joints 
reach their capacity before plastic hinging develops in the beam. Despite the minor differ-

Fig. 17 Comparison of experimental results and DRAIN-2DX predictions for bare joints (a) JA-3, (b) 

JB-1, and (c) JC-1
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ences, it is concluded that the scissors model as used in this study can be confidently used 
to obtain the nonlinear load-displacement envelope response of PTMS-strengthened joints

Overall, the experimental and numerical results from this study confirm that the repair 
and PTMS strengthening strategy was very effective at increasing the capacity of the joints. 
As a result, PTMS is deemed as a viable strengthening alternative to other traditional tech-

niques, particularly to reduce the vulnerability of RC buildings located in earthquake-prone 
developing countries. However, in the strengthening of real buildings, the presence of beams 
and slabs may prevent the installation of the metal straps on the faces of the joints. In these 
cases, additional steel plates can be used to support the metal straps as proposed by Garcia et 
al. (2014a), 2017). Due to the small number of joints tested in this study further research is 
necessary to verify the effectiveness of the PTMS technique on different joints with different 
geometries and strengthening strategies. Moreover, more practical design aids (e.g. Ma et 
al. 2015, 2016a; Imjai et al. 2017) are also necessary. Whilst the scissors model in DRAIN-
2DX proved effective to model the shear behaviour of the bare and PTMS-strengthened 
joints, other software (e.g. OpenSees) and modelling approaches should also be explored to 
provide further insight into the hysteretic behaviour of PTMS-strengthened joints.

Fig. 18 Comparison of experimental results and DRAIN-2DX predictions for PTMS-strengthened joints 
(a) JA-3PTMS (b) JB-1PTMS, and (c) JC-1PTMS

 

1 3



Bulletin of Earthquake Engineering

6 Summary and conclusions

This article presents an in-depth exploration of the seismic performance of exterior rein-

forced concrete (RC) beam-column joints, with a focus on their strengthening using Post-
Tensioned Metal Straps (PTMS), a novel technique offering active confinement. The study 
involved a two-stage experimental and numerical investigation. In the initial phase, four 
substandard joints underwent reverse cyclic loading, resulting in substantial core zone dam-

age. Subsequently, the damaged core was repaired with new concrete, and the joints were 
reinforced with PTMS, followed by a repetition of cyclic tests. The results were analysed 
and compared to predictions derived from existing models in the literature. Additionally, 
the joints were numerically modeled using the DRAIN-2DX software, adopting a “scis-

sors model” to determine their nonlinear envelope response.The following key conclusions 
emerge from the test results and analysis presented in this article:

 ● Bare Joint Behaviour: The behaviour of the substandard bare joints was characterised 
by extensive cracking and damage in the core, ultimately leading in premature shear 
failure (J-type). The capacity of the bare joints was approximately 50% that of their 
theoretical plastic capacity.

 ● ASCE/SEI 41−17 Predictions: ASCE/SEI 41−17 predicts the strength factor γ of the 
substandard bare joints within a 5% accuracy. This confirms that the ASCE/SEI 41−17 
can be reliably used to provide conservative predictions of the capacity of substandard 
joints as those tested in this study.

 ● Core Recasting and PTMS Strengthening: Repairing by recasting the core with new 
concrete led to a substantial increase in the shear capacity of the joints, with improve-

ments of up to 42% compared to their original bare counterparts. These results suggest 
that even the recasting of the (damaged) core zone with new concrete could be a po-

tential cost-effective option to improve the behaviour of damaged beam-column joints, 
particularly if limited resources for structural strengthening with PTMS are available. 
Subsequent PTMS strengthening of the recast core further enhanced the capacity by up 
to 25%. Furthermore, the repair and PTMS strengthening proved effective in signifi-

cantly increasing the deformation capacity of joint JC-1PTMS, achieving an enhance-

ment of approximately 50%.
 ● Model Validation: Results from DRAIN-2DX software confirm the efficacy of that 

scissors model in accurately simulating the nonlinear load-displacement envelope re-

sponse of both bare and strengthened joints. Hence, the scissors model can be con-

fidently used to obtain the nonlinear load-displacement envelope response of PTMS-
strengthened joints as those tested in this study.

This article makes a significant contribution to advancing the use of PTMS as an innovative 
and cost-effective technique for the strengthening of beam-column joints, thus making it 
an attractive option compared to traditional strengthening techniques. The results from this 
study suggest that the PTMS technique can offer a practical solution to reduce the vulner-
ability (and thus the seismic risk) of substandard RC buildings, particularly in developing 
countries with limited financial resources.
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7 Appendix A

For illustration, the PTMS design is shown for joint JC-1 PTMS.
The horizontal shear force demand in the joint (Vjh) was computed using force equilib-

rium according to Equation (A1),

 
Vjh = Tb − Vcol = P

[

Lb

z
−

Lb + 0.5hc
Hc

]

= 150× 103
[

1400

0.875 (368)
−

1400 + 0.5 (260)

2400

]

= 556kN  (3)

where Tb is the tension force of the top beam reinforcement; Vcol is the column shear force; 

Lb is the beam length to the applied at the loading point; Hc is the distance between column 
supports; hc is the height of the column cross section; and z is the lever arm of the beam 

flexural moment (assumed equal to 0.875 the beam effective depth).
The PTMS strengthening was designed considering the total shear capacity of the joint 

core as the sum of concrete and PTMS contributions. The concrete contribution (Vc) was 
computed according to ASCE/SEI 41−17 (2017) guidelines using Equation a shear strength 
coefficient

 γ = 0.083× 8
√
fck = 0.664

√
fck  (4)

The strength of the new concrete core of joint JC-1PTMS using the equation below,

 Vcc = γAj

√
fck = (0.664) (260 · 260)

√
57 = 339kN  (5)

where Aj is the effective horizontal joint area.
The shear resistance provided by the horizontal metal straps (Vs) was then calculated 

using first principles and considering the straps as an additional shear reinforcement (see 
Eq. 3). In this example, it is assumed that two-layered metal straps are spaced at s = 50 mm 
centre-to-centre, and that the straps are tensioned to 35% of their yield strength. Therefore:

 Vsh = (Avfydc) /S = (( 2 )( 1.27 )( 25 )( 930 )( 228 )) /50 = 269kN  (6)

where, Av is the cross-sectional area of the steel straps and dc is the effective depth of the 
column. The proposed PTMS layout was thus adequate to sustain the design shear force 
demand in the joint (Vcc+ Vsh > Vjh).
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