Cowie, R.M. orcid.org/0000-0003-3903-5916, Briscoe, A. orcid.org/0000-0002-8241-2353 and Jennings, L.M. orcid.org/0000-0003-1446-4511 (Cover date: September 2023) The influence of lubricant temperature on the wear of total knee replacements. Biosurface and Biotribology, 9 (3). pp. 71-77. ISSN 2405-4518
Abstract
Experimental in vitro simulation can be used to predict the wear performance of total knee replacements. The in vitro simulation should aim to replicate the in vivo loading, motion and environment experienced by the joint, predicting wear and potential failure whilst minimising test artefacts. Experimental wear simulation can be sensitive to environmental conditions; the environment temperature is one variable which should be controlled and was the focus of this investigation. In this study, the wear of an all-polymer (PEEK-OPTIMA™ polymer-on-UHMWPE) total knee replacement and a conventional cobalt chrome-on-UHMWPE implant of similar initial surface topography and geometry were investigated under elevated temperature conditions. The wear was compared to a previous study of the same implants under simulator running temperature (i.e. without heating the test environment). Under elevated temperature conditions, the wear rate of the UHMWPE tibial inserts was low against both femoral component materials (mean <2 mm3/million cycles) and significantly lower (p < 0.05) than for investigations at simulator running temperature. Protein precipitation from the lubricant onto the component articulating surfaces is a possible explanation for the lower wear. This study highlights the need to understand the influence of different variables including environmental temperature to minimise the test artefacts during wear simulation which may affect the wear rates.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 The Authors. Biosurface and Biotribology published by John Wiley & Sons Ltd on behalf of Institution of Engineering and Technology (IET) and Southwest Jiaotong University. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Keywords: | biotribology; PEEK; total knee replacement; UHMWPE; wear |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mechanical Engineering (Leeds) > Institute of Medical and Biological Engineering (iMBE) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 04 Oct 2023 15:40 |
Last Modified: | 21 Jan 2025 15:28 |
Status: | Published |
Publisher: | Wiley |
Identification Number: | 10.1049/bsb2.12061 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:203849 |
Download
Filename: Biosurface and Biotribology - 2023 - Cowie.pdf
Licence: CC-BY 4.0