Walker, G. orcid.org/0000-0001-5022-4756, Pevy, N., O'Malley, R. et al. (4 more authors) (2024) Speech patterns in responses to questions asked by an intelligent virtual agent can help to distinguish between people with early stage neurodegenerative disorders and healthy controls. Clinical Linguistics & Phonetics, 38 (9). pp. 880-901. ISSN 0269-9206
Abstract
Previous research has provided strong evidence that speech patterns can help to distinguish between people with early stage neurodegenerative disorders (ND) and healthy controls. This study examined speech patterns in responses to questions asked by an intelligent virtual agent (IVA): a talking head on a computer which asks pre-recorded questions. The study investigated whether measures of response length, speech rate and pausing in responses to questions asked by an IVA help to distinguish between healthy control participants and people diagnosed with Mild Cognitive Impairment (MCI) or Alzheimer’s disease (AD). The study also considered whether those measures can further help to distinguish between people with MCI, people with AD, and healthy control participants (HC). There were 38 people with ND (31 people with MCI, 7 people with AD) and 26 HC. All interactions took place in English. People with MCI spoke fewer words compared to HC, and people with AD and people with MCI spoke for less time than HC. People with AD spoke at a slower rate than people with MCI and HC. There were significant differences across all three groups for the proportion of time spent pausing and the average pause duration: silent pauses make up the greatest proportion of responses from people with AD, who also have the longest average silent pause duration, followed by people with MCI then HC. Therefore, the study demonstrates the potential of an IVA as a method for collecting data showing patterns which can help to distinguish between diagnostic groups.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2023 The Author(s). Published with license by Taylor & Francis Group, LLC. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent. |
Keywords: | response length; pausing; speech rate; mild cognitive impairment; Alzheimer’s disease; neurodegenerative disorders |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Arts and Humanities (Sheffield) > School of English (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 05 Sep 2023 15:00 |
Last Modified: | 04 Oct 2024 15:25 |
Status: | Published |
Publisher: | Taylor and Francis Group |
Refereed: | Yes |
Identification Number: | 10.1080/02699206.2023.2254458 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:202777 |