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ABSTRACT

Previous research has provided strong evidence that speech patterns 
can help to distinguish between people with early stage neurodegen-
erative disorders (ND) and healthy controls. This study examined 
speech patterns in responses to questions asked by an intelligent 
virtual agent (IVA): a talking head on a computer which asks pre- 
recorded questions. The study investigated whether measures of 
response length, speech rate and pausing in responses to questions 
asked by an IVA help to distinguish between healthy control partici-
pants and people diagnosed with Mild Cognitive Impairment (MCI) or 
Alzheimer’s disease (AD). The study also considered whether those 
measures can further help to distinguish between people with MCI, 
people with AD, and healthy control participants (HC). There were 38 
people with ND (31 people with MCI, 7 people with AD) and 26 HC. All 
interactions took place in English. People with MCI spoke fewer words 
compared to HC, and people with AD and people with MCI spoke for 
less time than HC. People with AD spoke at a slower rate than people 
with MCI and HC. There were significant differences across all three 
groups for the proportion of time spent pausing and the average 
pause duration: silent pauses make up the greatest proportion of 
responses from people with AD, who also have the longest average 
silent pause duration, followed by people with MCI then HC. Therefore, 
the study demonstrates the potential of an IVA as a method for 
collecting data showing patterns which can help to distinguish 
between diagnostic groups.
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Introduction

There is evidence that patterns in spontaneous speech can help to distinguish between people 
with early stage neurodegenerative disorders (ND) including mild cognitive impairment 
(MCI) and Alzheimer’s disease (AD) and healthy control participants. The accurate 
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distinction between these groups could allow more effective early diagnosis and monitoring 
for people with Alzheimer’s pathology so that treatment and support plans can be put in place.

Martı ́nez-Nicolás et al. (2021) reviewed studies which applied speech signal processing 
techniques to audio recordings of people with MCI and/or people with AD and healthy age- 
matched control groups. Many studies found evidence that response length, speaking rate, 
articulation rate and pausing were helpful in distinguishing between the groups. In 
a descriptive study of healthy controls, people with MCI and people with AD, Beltrami 
et al. (2018) found that features including pause rate, phonation rate, duration of speech 
segments and duration of silence segments differentiated between healthy controls, people 
with multidomain MCI and people with AD. In another descriptive study of healthy 
controls, people with MCI and people with AD, Qiao et al. (2020) reported that percentage 
of silence duration, average duration of phrasal segments, average duration of silence 
segments, number of speech segments, number of long pauses, ratio of hesitation/speech 
counts, and ratio of short pause/speech counts were among the speech parameters which 
showed statistical differences between the groups.

A group of studies reviewed by Martı ́nez-Nicolás et al. (2021) aimed for statistical 
classification of healthy controls and people with MCI and/or people with AD. In a series 
of studies comparing healthy controls and people with AD, López-de-Ipiña and colleagues 
found that statistical classification achieved an accuracy of around 90% or higher (López de 
Ipiña et al., 2013; López de Ipiña, Alonso-Hernández, et al., 2015; López de Ipiña, Solé- 
Casals, et al., 2015). Some of the features on which their classification was based related to 
duration, including proportion of voiceless frames. König et al. (2015) performed auto-
mated analyses of voice recordings of healthy controls, people with MCI and people 
with AD, including recordings of an image description task. Various features were mea-
sured including features relating to the continuity of speech and temporal organisation. 
Pairs of groups (healthy controls vs. MCI, healthy controls vs. AD, and MCI vs. AD) were 
classified with an accuracy of 79%−87% (±5%). Tóth et al. (2018) investigated data from two 
recall tasks (immediate and delayed) and a task in which participants were asked to talk 
about the previous day. Significant differences between healthy controls and people with 
MCI were reported for duration, the total length of silent pauses and the total length of 
pauses in all tasks. They were able to classify healthy controls and people with MCI with an 
accuracy of 78.8%. Data considered by Fraser et al. (2019) included healthy controls and 
people with MCI completing three tasks: reading silently, reading aloud and describing 
a picture. By combining data from the three tasks and examining a range of features (and 
not just speech) a classification accuracy of 83% was achieved. Al-Hameed et al. (2019) 
examined recordings of consultations between patients in a memory clinic (including 
people with MCI and people with AD) and a consultant neurologist. Selected features 
could classify the two groups with an accuracy of up to 97%, and the top features included 
features relating to response length, the number of pauses and the ratio of pauses to speech.

Boschi et al. (2017) reviewed a range of studies which examined connected speech samples 
from individuals with neurodegenerative diseases including MCI and AD (picture descrip-
tions, story narrations, and responses in interviews). Statistically significant differences on 
certain variables were found in multiple studies of connected spontaneous speech. For 
example, speech rate has been found to be higher for healthy controls than people with AD 
(Ash & Grossman, 2015; Ash et al., 2007; Carlomagno et al., 2005; Sajjadi et al., 2012; Singh 
et al., 2001), hesitation ratio has been found to be higher for people with AD than for healthy 
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controls (Cuetos et al., 2007; Hoffmann et al., 2010; Sajjadi et al., 2012), and mean length of 
utterance has been found to be higher for healthy controls than for people with AD (Ash & 
Grossman, 2015; Ash et al., 2007; Orimaye et al., 2014; Yancheva et al., 2015).

Findings of other studies not included in the reviews in Boschi et al. (2017) and 
Martı́nez-Nicolás et al. (2021) support the view that healthy controls can be differentiated 
from people with MCI and/or people with AD on the basis of patterns in spontaneous 
connected speech. For example, Khodabakhsh et al. (2015) examined 20 prosodic features 
of spontaneous conversations involving people with and without AD with a view to the 
automatic recognition of AD. Classification accuracy of more than 80% was achieved on the 
basis of silence ratio, average silence count, and average continuous word count; prosodic 
features were better predictors of AD than other linguistic features. O’Malley et al. (2020) 
examined 72 features, including 24 ‘acoustic-only’ characteristics, in recordings of healthy 
controls, people with MCI, people with AD and a group of people with functional cognitive 
disorder (FCD) responding to questions asked by an intelligent virtual agent. The acoustic- 
only features included measures of average silence. They found that a four-way classifica-
tion (healthy controls vs people with FCD vs MCI vs AD) could be achieved with an 
accuracy of 60%, with an accuracy of identifying people with AD of 80%.

In summary, there is strong evidence that speech patterns can help to distinguish 
between people with early stage neurodegenerative disorders and healthy controls. 
Numerous studies have found evidence that response length and other features relating to 
the temporal organisation of spontaneous speech, including speech rate and the number 
and length of pauses, are helpful in distinguishing between the groups. Work in this area to 
date, therefore, shows great promise. One aim of this study is to increase understanding of 
some of the specific details of certain speech features of people with ND, including people 
with MCI and people with AD, in comparison with healthy controls.

This study examines speech patterns in responses to questions asked by an intelligent 
virtual agent, or IVA: a talking head on a computer which asks the respondent pre-recorded 
questions when prompted to do so. Collecting data in this way is a relatively recent 
development, but studies from our group have shown that it can be used to distinguish 
between diagnostic groups (Mirheidari et al., 2017; Mirheidari, Blackburn, O’Malley, et al.,  
2019; Mirheidari, Blackburn, Walker et al., 2019; G. Walker et al., 2021; T. Walker et al.,  
2018). There are several benefits to using an IVA as a data collection method. This will be 
scalable, cheap and available to undertake remotely in people’s own home. Furthermore, 
from a research perspective it exerts control on the questions asked, reducing the variability 
involved when a human (clinician) asks a question. It has been shown that clinicians may 
make changes to questions and the order in which they ask them even when administering 
standardised neuropsychological tests (Barnes et al., 2018; Jones et al., 2019; T. Walker et al.,  
2018). Controlling the format and delivery of the questions by using an IVA ensures that all 
respondents are answering exactly the same questions as each other, in the same sequential 
contexts.

While it might be presumed that patterns which have been found in other sorts of 
spontaneous speech samples (e.g. picture description tasks, interviews with a human) will 
be evident in responses collected by an intelligent virtual agent, it is still important to test 
this directly. It has been found that speech directed to computers differs from speech 
directed to humans. For example, Burnham et al. (2010) found that in a discourse task, 
compared with human-directed speech, computer-directed speech had longer vowel 
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durations and larger vowel spaces. Other studies of people with ND have reported that 
analysing speech from different sorts of tasks yield different results. For example, in a study 
of speech produced by people with MCI, people with AD and people without cognitive 
impairment, Bschor et al. (2001) found that on a picture description task all groups 
produced an equal number of words, but the diagnostic groups could be better differen-
tiated via a naming task, and semantic and phonemic fluency tasks. Vincze et al. (2021) 
studied characteristics of speech produced by people with MCI, people with AD and healthy 
controls in tasks which test working and episodic memory (an immediate recall task, a task 
in which participants describe the previous day, and a delayed recall task). They found that 
certain characteristics distinguished between the groups more clearly on some tasks than 
others. In addition to further testing the validity of the intelligent virtual agent as a method 
of data collection, this also provides the opportunity to further refine our understanding of 
the organisation of spontaneous speech produced by people with ND, and how it compares 
with speech produced by healthy controls.

This study proceeds on the assumption that for any scalable tool, technology will be 
required in a fully or partially automated assessment of language. However, the results of 
any analysis will need translating or to be represented on a report that is comprehensible to 
clinicians working in memory assessment pathways, in primary and secondary care. 
Furthermore, the future of healthcare using digital platforms may grant patients greater 
access to their medical record, and future diagnostic or monitoring tools would need to be, 
to some degree, comprehensible by patients. The variables of speech that distinguish normal 
ageing from pathological ageing need to be clearly described and utilised in automated 
reports of language, including speech characteristics which can be readily perceived and 
understood by clinicians and patients. The results should be presented in such a way that 
clinicians and patients can see the results in understandable units of measurement and the 
extent of the variation within each group can be clearly seen.

The participants in this study are healthy controls, people with MCI and people with AD. The 
main question driving the study is: can responses collected by an IVA be used to detect measures 
of response length, speech rate and pausing to help distinguish between healthy controls and 
people with ND including people with MCI and people with AD? The methods of analysis and 
presentation employed are specifically intended to produce results and visualisation which are 
likely to be understandable to clinicians and patients. (Throughout this article we use ‘clinician’ 
to refer to members of the clinical team involved in assessing and treating patients with ND, 
including neurologists, psychologists, occupational therapists and specialist nurses.)

Methods

This section described the methods used in this study.

Ethical approval

Ethical approval for the collection of the data analysed in this study was granted by the NRES 
Committee South West-Central Bristol (REC number 16/LO/0737) in May 2016. Participants 
were recruited from two groups: patients attending memory or neuropsychology clinics in the 
Royal Hallamshire Hospital in Sheffield, United Kingdom and members of the University of the 
Third Age (https://www.u3a.org.uk).
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Participant information

Healthy controls all scored within the normal range on cognitive testing (Addenbrooke’s 
Cognitive Examination Revised). All participants were below clinical cut-offs for anxiety 
and depression as measured by the Generalized Anxiety Disorder questionnaire (GAD-7) 
and the Patient Health Questionnaire (PHQ-9), respectively, and were first language 
English speakers.

For the participants with a neurodegenerative disorder diagnosis, the diagnoses were 
made by cognitive neurologists at the Royal Hallamshire Hospital in Sheffield. The final 
diagnosis was made based on the results of structural and functional brain imaging, 
Addenbrooke’s Cognitive Examination, clinical interviews, and longitudinal monitoring. 
None of the participants were tested for protein based biomarkers. Participants were 
recruited to the study by convenience sampling; all were white, of British descent, and 
were raised and schooled in English.

The number of interactions examined is as follows: healthy controls = 26 (19 female, 7 male), 
people with ND = 38 (12 female, 26 male) of which people with MCI = 31 (11 female, 20 male) 
and people with AD = 7 (1 female, 6 male). The average age of participants, where this 
information is available, is as follows: healthy controls = 67.0 years (n = 17, median = 67, range  
= 54–80; age unknown = 9); people with MCI = 63.9 years (n = 30, median = 62, range = 37–88; 
age unknown = 1); people with AD = 64.2 years (n = 6, median = 62, range = 56–79; age 
unknown = 1). Cognitive tests were conducted specifically as part of the research project; 
Table 1 provides details of these test results, with at least one cognitive test result provided for 
most participants (35 out of 38).

The intelligent virtual agent

The IVA was created using BotLibre (https://www.botlibre.com). All participants provided 
written informed consent prior to communicating with the IVA. The IVA was shown on 
a laptop computer screen in front of the participant and asked a set of 12 pre-recorded 
questions. The questions were developed based on the findings of prior work undertaken on 
memory clinic consultations between patients and clinicians and an automated approach 
based on that data (Elsey et al., 2015; Jones et al., 2016). Participants were instructed to 
move from one question to the next by pressing a button on the computer keyboard after 
they had finished their response. Audio and video recordings of the participants were 
captured. The recordings were made using the built-in microphone and camera on the 
computer. The interactions occurred in the presence of a research assistant who was 
instructed to remain as passive as possible during the recording but could support patients 
with the recording procedure if necessary. Participants could choose to be accompanied by 
a partner or relative in which case the companion was also recorded. Interactions where an 
accompanying partner was present and spoke in the course of answering either or both of 
the target questions were excluded.

Task elicitation

This study examines responses to two questions concerning recent events, one about 
what the participant did over the previous weekend, and another about what had 
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been in the news recently. Questions concerning recent events have particular 
relevance to this study because Ribot’s law states that recent memories are more 
sensitive to impairment than memories about remote events. This is supported by 
clinical observation and empirical research (see e.g. Müller et al., 2016 who found 
that people with memory problems were better able to remember remote autobio-
graphical events than recent events). It also reflects the nature of the pathology of 
Alzheimer’s disease, the most common form of dementia (or reason for the diag-
nosis of Mild Cognitive Impairment): the degeneration of brain structures involved 
in acquiring new memories rather than networks involved in retrieving older mem-
ories. The questions resemble semi-standardised questions asked in conventional 
memory clinics where clinicians prompt patients to recall recent events. 
Orthographic transcriptions of the interactions were prepared by experienced inter-
view transcribers.

Table 1. Details of cognitive test results for people with mild 
cognitive impairment (PwMCI) and people with Alzheimer’s disease 
(PwAD).

group

cognitive test

MoCA ACE ACE-III MMSE

PwMCI 29 85 28
29
28 62
27 85
27 83 23
26 28
26
26
25 93 26
25

90 27
89 62
88 91
84 25
83 97 26
83
82 98 28
81 29
78 28
78 27
76 70 28
70 83 27
70 30
70 28

99 27
98 22
97 28
97 28
93 30

PwAD 29
67

29
23
19
13
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Speech timing measurements and procedures

All phonetic analysis was conducted using Praat (Boersma & Weenink, 2023) with sub-
sequent data processing using Python (Python Software Foundation, 2023) and R (R 
Foundation for Statistical Computing, 2023). This section describes the measurement 
procedures for response length and pausing, and speech rate.

Response length and pausing

Response length will be presented in terms of numbers of words and duration. Two 
variables will be reported for duration: ansDur and spDur. Both variables involve using 
Praat to detect voiced frames in the portion of the recording between the end of one 
question from the IVA and the beginning of the next question. Voicing can be detected 
reasonably well using automated methods even in environments with background noise 
and where recording quality is suboptimal. Voiced frames are identified from pitch traces 
created using a two-pass detection method (De Looze & Hirst, 2008; Hirst & De Looze,  
2021).

The variable ansDur is a measure from the time of the first voiced frame to the last voiced 
frame. The variable spDur is based on the variable ansDur, minus any silent pauses. Any 
portion between the first voiced frame and the last where there were consecutive unvoiced 
frames lasting 0.5 s or longer was considered a silent pause; the remaining portions (i.e. 
where there is voicing, or voiceless portions of less than 0.5 s), are taken as a proxy for 
speech. Experimentation suggested that a silent pause threshold of 0.5 s did a good job of 
balancing the identification of pauses in the responses with the need to disregard sequences 
of voiceless speech sounds where voicing is not expected. Average silent pause duration is 
reported separately as the variable silPauseAve, and the proportion of silent pauses in 
responses is reported as the variable silPauseProp. All labelling of speech and silent pauses 
and the subsequent extracting of results was done via an automated approach using Praat.

Speech rate

Measures of speech rate will take two forms. Following Laver (1994), speaking rate is the 
rate of speech of the whole speaking-turn, in this case from the first voiced frame in the 
response to the question to the last; articulation rate is calculated on the basis of what is 
produced between the same two points but excluding any silent pauses.

Measures of speech rate will be given in words per second (words/s; srWords for speaking 
rate; arWords for articulation rate) and in syllables per second (syll/s; srSylls for speaking 
rate; arSylls for articulation rate). Orthographic transcriptions were run through espeak-ng 
(Dunn, 2023) to create phonemic transcriptions. Since vowels form the nucleus (or peak) of 
a syllable in citation-form English, the number of vowel segments will be equivalent to the 
number of syllables in a citation-form production of the word. (Diphthongs were treated as 
single segments.) These counts were used to establish the number of syllables in the 
responses. So, for example, if a response takes 30 s to produce and consists of 45 two- 
syllable words then the speaking rate for the response measures 45/30 = 1.5 words/s 
[srWords] and 90/30 = 3 syll/s [srSylls]. If that response contains 10 s of silent pauses, 
then the articulation rate measures 45/(30–10) = 2.25 words/s [arWords] and 90/(30–10)  
= 4.5 syll/s [arSylls]. The greater the difference between speaking rate and articulation rate, 
the higher the proportion of response time taken up by silent pauses.
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Statistical analysis

Shapiro-Wilk tests found that measures on most variables for most groups had non-normal 
distributions, and where distributions were found to have normal distributions, they broke 
the homogeneity of variance assumption according to Levene’s test. The non-parametric 
Kruskal Wallis test was therefore used to determine whether the measures of each variable 
had data distributions which were significantly different for the three-way comparison 
between healthy controls, people with MCI, and people with AD. No additional comparison 
was made between the aggregate of people with AD and people with MCI (people with ND) 
compared to healthy controls. Post-hoc analyses were conducted for variables with 
a significant difference using Dunn’s test. The False Discovery Rate (FDR) approach was 
used to correct for multiple comparisons. The FDR was calculated using all post-hoc tests 
rather than the comparisons for a single Kruskal Wallis test. FDR was selected over other 
more stringent tests, for example Bonferroni, to reduce the risk of false negatives. Since this 
study is part of a longer-term programme of research, we are keen to avoid false negatives 
which could lead to important features being overlooked in our future model development.

Correlations will be presented using Pearson’s correlation coefficient. Correlations will 
be presented using Pearson’s correlation coefficient. Correlation analysis will help us 
determine the extent to which the phenomena could be explained by fewer variables. We 
expect there will be correlations between some of the variables but not others. For example, 
we expect to find correlations between measures expressed in numbers of words and in 
numbers of syllables: because words consist of syllables, as the number of words increases, 
the number of syllables will also increase. There are other variables where we do not 
particularly expect to see a correlation, for example between the number of words produced 
and the average length of pauses.

Although it is important to determine how the variables in this analysis differ between 
individuals at different stages of cognitive decline (people with AD and people with MCI), 
a scalable tool for detecting early signs of cognitive decline may be applied in the detection 
of cognitive decline in general. Furthermore, given that the variables all measure different 
properties of speech, it may be possible to detect differences between healthy controls and 
people with ND using fewer of the variables utilised in this study. Therefore, a logistic 
regression analysis was conducted to identify the variables that explain the most variance 
for the differential diagnosis between healthy controls and people with ND.

Results

This section presents an investigation into potential differences in the speech patterns of 
healthy controls, people with MCI and people with AD. As a further step, people with MCI 
and people with AD are combined into one group to see whether people with early stage 
neurodegenerative disorders (i.e. MCI and AD) can be distinguished from healthy controls.

Speech measures for people with mild cognitive impairment, Alzheimer’s disease and 

healthy controls

This section presents results relating to speech patterns of healthy controls, people with 
MCI and people with AD.
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Response length measures

Figure 1 shows measures of response length for responses by healthy controls, people with 
MCI and people with AD. The bottom of the box in each boxplot represents the first 
quartile (Q1) and the top of the box represents the third quartile (Q3); the horizontal line 

Figure 1. Measures of response length for healthy control participants (HC), people with mild cognitive 
impairment (PwMCI), people with Alzheimer’s disease (PwAD) and people with diagnosed early stage 
neurodegenerative disorders (PwND; PwMCI + PwAD).
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within the box represents the median (Q2); the whiskers extend to the value of any data- 
points below Q1 or above Q3, provided that the distance between the data-point and Q1 or 
Q3 is less than 1.5 times the interquartile range (i.e. Q3-Q1). A dot is overlaid on the boxplot 
to represent the value for an individual speaker within a group; to avoid complete overlap of 
symbols, dots are presented with horizontal ‘jitter’.

Each of the response length measures were analysed using the Kruskal Wallis test and 
Dunn’s Correction. There was a significant group difference in the number of words spoken 
[words], H(2) = 7.002, p = 0.03. People with MCI (median = 46 words) spoke significantly 
fewer words (p = 0.022) compared to healthy controls (median = 115.5 words). There was 
no significant difference between people with AD (median = 55) and healthy controls (p =  
0.12). There was no significant group difference for the answer duration [ansDur], H(2) =  
4.542, p = 0.103. Finally, there was a significant group difference for the speech duration 
[spDur], H(2) = 11.055, p = 0.004. People with AD (median = 12.5 s) spoke for significantly 
less time (p = 0.017) than healthy controls (median = 41.7 s) and people with MCI (median  
= 17.9 s) spoke for significantly less time (p = 0.017) than healthy controls.

Speech rate measures

Figure 2 shows measures of speech rate for responses by healthy controls, people with MCI 
and people with AD.

Each of the response length measures were analysed using the Kruskal Wallis test and 
Dunn’s Correction. There was no significant difference between the groups for articulation 
rate measured in words [arWords], H(2) = 5.087, p = 0.079. However, there was a significant 
group difference in articulation rate measured in syllables [arSylls], H(2) = 6.327, p = 0.042. 
The articulation rate measured in syllables was significantly faster (p = 0.03) for people 
with AD (median = 5.11 words/s) compared to healthy controls (median = 4.14 words/s) 
and significantly faster (p = 0.02) compared to people with MCI (median = 4.009 words/s). 
There was no significant difference between people with MCI and healthy controls (p =  
0.87). There was a significant group difference in the speaking rate measured in words 
[srWords], H(2) = 13.853, p = 0.001. People with AD (median = 1.35 words/s) spoke words 
significantly slower (p = 0.002) than healthy controls (median = 2.16 words/s) and signifi-
cantly slower (p = 0.02) than people with MCI (median = 1.9 words/s). There was no 
significant difference between people with MCI and healthy controls (p = 0.09). 
Furthermore, there was a significant group difference in speaking rate measured in syllables 
[srSylls], H(2) = 13.849, p = 0.001. The speaking rate for people with AD (median = 1.785 
sylls/s) was significantly slower (p = 0.001) than healthy controls (median = 2.87 sylls/s) and 
significantly slower (p = 0.019) than people with MCI (median = 2.47 sylls/s). There was no 
significant difference between people with MCI and healthy controls (p = 0.089).

Measures of silent pauses

Each of the measures of silent pauses were analysed using the Kruskal Wallis test and Dunn’s 
Correction. There was a significant group difference for the silent pause proportion 
[silPauseProp], H(2) = 18.196, p < 0.001. People with AD (median = 66.89%) paused for 
a higher proportion of time (p < 0.001) compared to healthy controls (median = 29.95%) and 
a significantly higher proportion of time (p = 0.017) compared to people with MCI (median =  
40.78%). People with MCI paused for a significantly higher proportion of time (p = 0.028) 
compared to healthy controls. There was a significant group difference for the average duration 
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of silent pauses [silPauseAve], H(2) = 20.592, p < 0.001. The average duration of silent pauses 
was significantly longer (p < 0.001) for people with AD (median = 2.66) compared to healthy 
controls (median = 0.99) and was significantly longer (p = 0.017) compared to people with 

Figure 2. Measures of speech rate for healthy control participants (HC), people with mild cognitive 
impairment (PwMCI), people with Alzheimer’s disease (PwAD) and people with diagnosed early stage 
neurodegenerative disorders (PwND; PwMCI + PwAD).
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MCI (median = 1.24). People with MCI had significantly longer pauses (p = 0.017) compared 
to healthy controls. Figure 3 displays the pause measures for all three groups. (Figures 3 and 6 
show results for 61 participants because 3 participants – all people with MCI – have no silent 
pauses in their answers, therefore there are no average silent pause duration figures to report.)

There is a very strong positive correlation between silent pause proportion and average 
silent pause duration such that as one variable increases so does the other (Pearson’s 
correlation coefficient r for the sample as a whole = 0.846, p < 0.001).

In summary, at the level of the group there is a progression for both silent pause 
proportion and average silent pause duration such that measures for people with 
MCI are higher than for healthy controls, and measures are higher again for people 
with AD.

Summary

People with MCI spoke significantly fewer words compared to healthy controls. People 
with AD spoke for significantly less time than people with MCI and healthy controls, 
and people with MCI spoke for significantly less time than healthy controls. With 
regards to speech rate, people with AD displayed a faster articulation rate when 
measured in syllables compared to people with MCI and healthy controls. People 
with AD displayed a slower speaking rate compared to people with MCI and healthy 
controls. Silent pauses make up the greatest proportion of responses from people 
with AD, followed by people with MCI, then healthy controls. The average duration 
of silent pauses is shortest in responses from healthy controls, longer in responses from 
people with MCI, and longest in responses from people with AD.

Figure 3. Proportion of response time taken up by silent pauses and average silent pause duration in 
responses by healthy control participants (HC), people with mild cognitive impairment (PwMCI) and 
people with Alzheimer’s disease (PwAD).
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Speech measures for people with early stage neurodegenerative disorders and 

healthy controls

This section presents results relating to speech patterns of healthy controls and people with 
ND to inform the reader of the presentation of these speech patterns when people with MCI 
and people with AD are combined.

Response length measures

Figure 1 shows response length measures for healthy controls and people with ND. The 
median number of words produced by healthy controls is 116 words, whereas the median 
for people with ND is lower at 49.5 words. The median response duration for healthy 
controls is 53.7 s [ansDur] and 41.7 s [spDur], and the median for people with ND is shorter 
at 28.9 s [ansDur] and 14.6 s [spDur]).

Speech rate measures

Figure 2 shows speech rate measures for healthy controls and people with ND. The median 
speaking rates for healthy controls are 2.16 words/s and 2.87 sylls/s; the medians for people 
with ND are slower at 1.65 words/s and 2.26 sylls/s. The median articulation rates for 
healthy controls is 3.00 words/s and 4.14 sylls/s, and are very similar to the median for 
people with ND which are 3.09 sylls/s, 4.19 sylls/s.

Measures of silent pauses

A larger proportion of response time is taken up by silent pauses for people with ND than 
for healthy controls. The average silent pause proportion for people with ND is 45.25%, and 
29.95% for healthy controls. Figure 4 shows the proportion of each participant’s responses 
which consists of silent pauses, as well as their average silent pause duration.

Figure 4. Proportion of response time taken up by silent pauses and average silent pause duration in 
responses by healthy control participants (HC) and people with diagnosed early stage neurodegenerative 
disorders (PwND).
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There is a very strong correlation between the proportion of response time taken 
up by silent pauses and average silent pause duration when all participants are 
combined (Pearson’s correlation coefficient r for the sample as a whole = 0.846, p  

< 0.001, for healthy controls r = 0.815, p < 0.001, and for people with ND r = 0.839, p  

< 0.001). The average silent pause duration in responses from people with ND is 
higher than the average silent pause duration for healthy controls. This is borne out 
by aggregate measures: the average duration of all silent pauses in responses from 
people with ND is 1.64 s while the average duration of all silent pauses in responses 
from healthy controls is 1.01 s.

Logistic regression

A logistic regression was carried out to assess the effect of all nine variables [spDur, 

ansDur, words, silPauseAve, silPauseProp, arWords, arSylls, srWords, srSylls] on the 
likelihood of cognitive decline where individuals with AD and MCI were grouped 
together. The overall model was statistically significant when compared to the null 
model, (χ2 (9) = 31.275, p < 0.001), explained 52.2% of the variation of cognitive decline 
(Nagelkerke R2) and correctly predicted 84.4% of cases (sensitivity = 94.7% and speci-
ficity = 69.2%). The forward stepwise (conditional) method was used to determine which 
variables explain the most variance within the data. The procedure identified two 
variables that explained the most variance: spDur and ansDur. The Logistic Regression 
model was statistically significant when compared to the null model, (χ2 (2) = 26.133, p  

< 0.001), explained 45.2% of the variation of cognitive decline (Nagelkerke R2) and 
correctly predicted 76.6% of cases (sensitivity = 89.5% and specificity = 57.7%). Figure 5 
visualises the Logistic Regression decision boundary for the model identified using the 
forward stepwise method.

Figure 5. A scatter plot visualisation of the duration of speech (spDur) and total duration of the response 
(ansDur) for healthy control participants (HC) and people with diagnosed early stage neurodegenerative 
disorders (PwND). The linear decision boundary generated by the Logistic regression model is repre-
sented by the diagonal line within the plot. Data points to the right of the line will receive a prediction of 
HC. Data points to the left of the line will receive a prediction of neurodegenerative disorder.
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Summary

Measures of response length, whether measured in terms of words, ansDur or spDur, can 
help to distinguish the two groups, people with ND tending to produce shorter responses 
than healthy controls. While measures of articulation rate are quite similar for the two 
groups, measures of speaking rate can help to distinguish them, people with ND tending to 
produce responses with a slower speaking rate than healthy controls. Silent pauses take up 
a greater proportion of the response time for people with ND than for healthy controls and 
the average length of silent pauses tends to be shorter in responses from healthy controls 
than in responses from people with ND. Across all variables, the variables spDur and 
ansDur are able to explain the most variance within the data and effectively differentiate 
between people with ND and healthy controls.

Correlation analysis

Figure 6 presents a correlation matrix for all variables when all participants are combined.

Discussion

The main question driving this study is: can responses collected by an IVA be used to detect 
measures of response length, speech rate and pausing to help distinguish between healthy 
controls and people with ND including people with MCI and people with AD? It has been 
found, on the basis of data collected using an IVA, that responses from healthy controls 
were longer than those produced by people with ND. For example, healthy controls spoke 

Figure 6. Correlation matrix for all variables, all participants combined (n = 64). Cells in the matrix show 
values for Pearson’s correlation coefficient r where p < 0.05.
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for significantly more time than people with MCI and people with AD, people with MCI 
spoke for significantly more time than people with AD, and people with MCI spoke fewer 
words. This suggests that healthy controls are better able to remember and describe things 
in detail than people with ND. This could in part be a reflection of responses from healthy 
controls containing more words: all else being equal, a response containing more words will 
take longer to produce. It has been found that a larger proportion of response time for 
people with MCI and people with AD is taken up by silent pauses than for healthy controls 
and that the average silent pause duration is longer for people with AD and people with 
MCI than for healthy controls, with a strong correlation between the two variables. The 
strength of this correlation is not inevitable. For example, an individual could pause only 
occasionally in a long answer, but those pauses could be long. This would give a relatively 
high value for average silent pause duration but a relatively low value for silent pause 
proportion. Conversely, an individual could pause frequently and for a short time in a short 
answer giving a relatively low value for average silent pause duration but a relatively high 
value for silent pause proportion. The correlations could be explained by people with ND 
pausing more often and for longer as they try to think of what to say. It has been found that, 
in terms of speaking rate, people with AD have a slower speaking rate than MCI and healthy 
controls. It has also been found that, moving from healthy controls to people with MCI to 
people with AD, the proportion of response time taken up by silent pauses and the average 
silent pause duration increase, with a strong correlation between the two variables. This 
suggests that as neurodegenerative disease progresses and memory becomes increasingly 
impaired, participants are pausing more often and for longer as they find it increasingly 
difficult to either produce words or to remember what they are answering.

The strength of the correlations between some pairs of variables shown in Figure 6 might 
be anticipated. For example, it makes sense that ansDur and spDur both show a strong 
positive correlation with words: as the number of words in the responses goes up, so does 
the time it takes to produce the response. The strength of the correlation between srWords 

and srSylls, and between arWords and arSylls is unsurprising since words consist of 
syllables: as the rate at which words are produced goes up, the rate at which syllables 
produced also goes up. The strength of the negative correlations between the proportion of 
silent pauses (silPauseProp) and speaking rate (srSylls, srWords), and between the average 
duration of silent pauses (silPauseAve) and speaking rate is also unsurprising since speaking 
rate is calculated on the basis of the duration of the response (i.e. speech + pauses), so as the 
average duration and proportion of silences goes up, measures of speaking rate go down. 
These correlations suggest that a reduced number of variables may be sufficient to predict 
the diagnosis should these speech variables be incorporated in an automated analysis of 
speech. This was supported by the Logistic Regression analysis using the forward stepwise 
method whereby spDur and ansDur were able to explain a large proportion of the variance 
between the healthy controls and people with ND.

The statistical analysis has shown that people with MCI, people with AD and healthy 
controls can be distinguished on a range of variables relating to speech patterns (response 
duration, speaking rate and pausing). Since there are statistically significant differences 
between all the groups (healthy controls, people with MCI and people with AD) on variables 
relating to pausing, these variables may have particular relevance to distinguishing between 
the groups on the basis of other datasets. These variables are attractive for other reasons too. 
The variables can be measured automatically which makes them attractive for future 
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automated diagnostic or stratification systems. The measurements are reasonably robust 
even when applied to recordings of suboptimal quality such as those recorded in 
a consultation room. Since the measurements concern relatively simple features of the 
speech signal (such as how long the silent pauses are, and how much of the response time is 
accounted for by those silent pauses) they can be readily understood by anyone considering 
the results, including clinicians and patients. This is important in order to enhance the 
interpretability or explainability of the system, i.e. to increase the likelihood of being able to 
successfully describe the internals of the system to others (for a review of interpretability, 
explainability and intelligibility in the context of machine learning, see Marcinkevičs & 
Vogt, 2023). Interpretability is especially important in the case of clinical decision making, 
where clinicians need to have confidence in the system they are using. A further considera-
tion is that clinicians and patients involved in the memory assessment pathway may have 
little or no specialist knowledge of linguistic and phonetic analysis.

Previous work on the temporal organisation of spontaneous speech shows great promise 
in helping to distinguish between people with early stage neurodegenerative disorders and 
healthy controls. However, it can be difficult to see how the findings of that work could be 
applied in clinical settings due to the technical and other knowledge required. One barrier is 
that the acoustic variables studied may require significant technical expertise to study and to 
interpret in a meaningful way (e.g. Al-Hameed et al., 2019; Beltrami et al., 2018; 
Khodabakhsh et al., 2015; López de Ipiña et al., 2013; López de Ipiña, Alonso-Hernández, 
et al., 2015; López de Ipiña, Solé-Casals, et al., 2015; O’Malley et al., 2020). In some cases it is 
unclear precisely how the features were extracted or studied. Another barrier is the com-
plexity of the models used in the statistical classification: some models are very complex, 
especially for non-specialists (e.g. Al-Hameed et al., 2019; Fraser et al., 2019; König et al.,  
2015; Tóth et al., 2018).

The findings of this study, where an IVA was used as part of the data collection method, 
are consistent with findings from studies using other methods of data collection. For 
example, López de Ipiña, Alonso-Hernández, et al. (2015) and López de Ipiña, Solé- 
Casals, et al. (2015) examine video recordings of interactions in which healthy controls 
and people with AD tell stories or recount feelings. They report that recordings of people 
with AD speak for less time than healthy controls, people with AD speak more slowly and 
have longer pauses than healthy controls. In Nasrolahzadeh et al. (2018) collected similar 
data, recordings conversations in which people with AD and healthy controls were asked to 
tell stories and to express their feelings. They report that people with AD spoke more slowly 
and with longer pauses than healthy controls. These are all tendencies which have been 
observed in this study, and set out in greater detail than in that previous work.

There are several implications of this study. First, this study has helped to further 
demonstrate the usefulness of phonetic analysis to distinguish between the three groups. 
Second, this study has helped to demonstrate the usefulness of an IVA as a method for 
collecting data because we have shown differences between the groups. Finally, the auto-
mated methods of analysis, labelling by detecting voiced frames and calculating speaking 
rate based on orthographic transcriptions could be utilised to produce a report for clinicians 
and patients.

The limitations of this study provide opportunities for development in the future. First, the 
number of participants considered here is quite modest which reduces the strength of the 
conclusions which can be drawn. One surprising finding was that on one measure (arSylls) 
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articulation rate was significantly faster for people with AD (the smallest of the three groups) 
compared to people with MCI and healthy controls. There is no obvious explanation for this 
finding, and it should be explored further with a larger sample size. However, while the groups 
are small, even small groups of participants ought to be sufficient to reveal any widespread 
patterns in the groups. Second, there is quite wide variation in some of the cognitive test results 
within the groups. For example, results on the MMSE for people with AD (the group with the 
significantly faster articulation rate) ranges from 13 to 29 points. However, in the longer term we 
are interested in contributing to the creation of screening tools for the early detection of 
neurodegenerative disorders in clinical settings, and the variation in our data reflects to some 
extent to heterogeneity of patients in the clinic: the earliest opportunity to detect neurodegen-
erative disorder in one person might be soon after symptoms first present, whereas for another, 
it might be at a point where their cognition has deteriorated further. As a group, the people with 
ND in this study are relatively young to have received such a diagnosis, so our being able to 
distinguish between the groups is encouraging with regard to the early detection of neurode-
generative disorders in clinical settings. Furthermore, visual inspection of the distribution of the 
measures used within our analysis across groups and age (including an exploration of the 
measures for participants for whom age is unknown) did not identify any age related trends 
within the data. Third, the lack of testing for protein based biomarkers of AD, especially the MCI 
cohort, is a limitation. This is related to these biomarkers being available by cerebrospinal fluid 
analysis or PET scanning which are invasive or very expensive. The development of blood based 
biomarkers of AD will facilitate validation of this approach. Fourth, while employing an IVA 
exerts some control over the interactions, participants were allowed to bring someone with them 
as a companion which some (but not all) participants did. The variation in the presence/absence 
of a companion reflects variation observed in the clinic (Elsey et al., 2015), and while recordings 
were excluded where the companion spoke during the response to any of the target questions in 
this study, it is conceivable that the presence of the companion may have still had some impact 
on the responses given. Fifth, the only language considered is English. This means it is not clear 
how generalisable these findings are to other languages, though if differences between the 
groups reflect increasingly compromised cognitive function, then it might be anticipated that 
the differences would be observed when interactions take place in other languages too. It is also 
worth noting that variation in speech rate across languages (Coupé et al., 2019) means that 
cross-linguistic comparison of speech rate would need to be carefully executed.

While there are parallels here with some previous work, some of the findings of 
this study seem to be slightly at odds with other studies. For example, in a study of 
speech produced by people with MCI, people with AD and people without cognitive 
impairment, Bschor et al. (2001) found that all groups produced an equal number of 
words on a picture description task (cf. Figures 1a and 4a). One possible explanation 
for the difference between the findings of Bschor et al. (2001) and the current study 
is that the method of data collection is substantially different in each case. In 
a study of the speech of patients with posterior cortical atrophy (PCA), where the 
Alzheimer pathology begins in the occipital lobes, Crutch et al. (2013) studied data 
from a battery of neurolinguistic and neuropsychological test, including a task in 
which participants talked about their last holiday. They analysed the samples for 
a range of features including the number of words produced, speech rate, and mean 
and maximum inter-word intervals. They found no significant difference between 
patients with PCA and healthy controls on total words or pause length. This may 
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well reflect sparing of cortical areas involved in language in the early stages of PCA. 
They found a significant difference between patients with PCA and healthy controls 
in speech rate. This study found a statistically significant difference between people 
with MCI and healthy controls in the number of words produced. This study also 
found a statistically significant difference in speech rate between people with AD 
compared to people with MCI and healthy controls, and a difference between all 
three groups on average silent pause proportion and average silent pause duration.

Conclusion

This study set out to investigate whether measures of response length, speech rate and pausing in 
responses to questions asked by an IVA can help to distinguish between healthy controls and 
people with ND, and further distinguish between people with MCI and people with AD. It 
contributes to a significant line of research which has gained momentum in recent years.

The uncomplicated and accessible approach taken here has revealed patterns in the data 
which help to distinguish healthy controls and people with ND, including people with MCI 
and people with AD. It has been found that people with MCI spoke fewer words compared 
to healthy controls, and people with AD and people with MCI spoke for less time than 
healthy controls. People with AD spoke at a slower rate than people with MCI and healthy 
controls. Furthermore, there were significant differences across all three groups for the 
proportion of time spent pausing and the average pause duration: healthy controls dis-
played the lowest and people with AD displayed the highest proportion of time spent 
pausing and the longest average pause duration. Logistic regression identified two variables 
that explained the most variance, both relating to response length, and the model correctly 
predicted 76.6% of cases of neurodegenerative disorder.

Several characteristics of this study set it apart from other work in this area. The data 
collection process involves using an IVA, hence not requiring a clinician or human to collect 
the data, which is crucial in healthcare where there is limited time to manage the current 
demand on memory assessment pathways. The variables were selected because they relate in 
fairly straightforward ways to speech characteristics to which human listeners will have some 
sensitivity. The variables may therefore reflect features which memory assessment clinicians 
already utilise during consultation but cannot quantify. The results have been presented in such 
a way that each participant’s measure on each variable can be seen allowing the variability within 
the data to be appreciated. The visualisations which have been presented do not require 
specialist knowledge to interpret. The aim of taking these steps has been to make the procedures 
and findings as accessible as possible, to as wide a range of researchers as possible and to allow 
technical measures to be translated into a meaningful report for clinicians.
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