Newman-Griffis, D. orcid.org/0000-0002-0473-4226 and Zirikly, A. (2018) Embedding transfer for low-resource medical named entity recognition: a case study on patient mobility. In: Demner-Fushman, D., Bretonnel Cohen, K., Ananiadou, S. and Tsujii, J., (eds.) Proceedings of the Biomedical Natural Language Processing 2018 workshop (BioNLP 2018). The Biomedical Natural Language Processing 2018 workshop (BioNLP 2018), 19 Jul 2018, Melbourne, Australia. Association for Computational Linguistics , pp. 1-11. ISBN 9781948087339
Abstract
Functioning is gaining recognition as an important indicator of global health, but remains under-studied in medical natural language processing research. We present the first analysis of automatically extracting descriptions of patient mobility, using a recently-developed dataset of free text electronic health records. We frame the task as a named entity recognition (NER) problem, and investigate the applicability of NER techniques to mobility extraction. As text corpora focused on patient functioning are scarce, we explore domain adaptation of word embeddings for use in a recurrent neural network NER system. We find that embeddings trained on a small in-domain corpus perform nearly as well as those learned from large out-of-domain corpora, and that domain adaptation techniques yield additional improvements in both precision and recall. Our analysis identifies several significant challenges in extracting descriptions of patient mobility, including the length and complexity of annotated entities and high linguistic variability in mobility descriptions.
Metadata
Item Type: | Proceedings Paper |
---|---|
Authors/Creators: |
|
Editors: |
|
Copyright, Publisher and Additional Information: | © 2018 Association for Computational Linguistics. Licensed on a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Social Sciences (Sheffield) > Information School (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 17 Feb 2023 12:06 |
Last Modified: | 18 Feb 2023 01:16 |
Status: | Published |
Publisher: | Association for Computational Linguistics |
Refereed: | Yes |
Identification Number: | 10.18653/v1/w18-2301 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:196493 |