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Abstract

Functioning is gaining recognition as an

important indicator of global health, but

remains under-studied in medical natural

language processing research. We present

the first analysis of automatically extract-

ing descriptions of patient mobility, using

a recently-developed dataset of free text

electronic health records. We frame the

task as a named entity recognition (NER)

problem, and investigate the applicabil-

ity of NER techniques to mobility extrac-

tion. As text corpora focused on patient

functioning are scarce, we explore domain

adaptation of word embeddings for use

in a recurrent neural network NER sys-

tem. We find that embeddings trained on

a small in-domain corpus perform nearly

as well as those learned from large out-of-

domain corpora, and that domain adapta-

tion techniques yield additional improve-

ments in both precision and recall. Our

analysis identifies several significant chal-

lenges in extracting descriptions of patient

mobility, including the length and com-

plexity of annotated entities and high lin-

guistic variability in mobility descriptions.

1 Introduction

Functioning has recently been recognized as a

leading world health indicator, joining morbid-

ity and mortality (Stucki and Bickenbach, 2017).

Functioning is defined in the International Clas-

sification of Functioning, Disability, and Health

(ICF; WHO 2001) as the interaction between

health conditions, body functions and structures,

activities and participation, and contextual fac-

tors. Understanding functioning is an important

element in assessing quality of life, and automatic

extraction of patient functioning would serve as

a useful tool for a variety of care decisions, in-

cluding rehabilitation and disability assessment

(Stucki et al., 2017). In healthcare data, natu-

ral language processing (NLP) techniques have

been successfully used for retrieving information

about health conditions, symptoms and procedures

from unstructured electronic health record (EHR)

text (Soysal et al., 2018; Savova et al., 2010).

As recognition of the importance of functioning

grows, there is a need to investigate the application

of NLP methods to other elements of functioning.

Recently, Thieu et al. (2017) introduced a

dataset of EHR documents annotated for descrip-

tions of patient mobility status, one area of activity

in the ICF. Automatically recognizing these de-

scriptions faces significant challenges, including

their length and syntactic complexity and a lack of

terminological resources to draw on. In this study,

we view this task through the lens of named en-

tity recognition (NER), as recent work has illus-

trated the potential of using recurrent neural net-

work (RNN) NER models to address similar issues

in biomedical NLP (Xia et al., 2017; Dernoncourt

et al., 2017b; Habibi et al., 2017).

An additional strength of RNN models is their

ability to leverage pretrained word embeddings,

which capture co-occurrence information about

words from large text corpora. Prior work has

shown that the best improvements come from em-

beddings trained on a corpus related to the target

domain (Pakhomov et al., 2016). However, free

text describing patient functioning is hard to come

by: for example, even the large MIMIC-III corpus

(Johnson et al., 2016) includes only a few hundred

documents from therapy disciplines among its two

million notes. While recent work suggests that us-

ing a training corpus from the target domain can

mitigate a lack of data (Diaz et al., 2016), even

a careful corpus selection may not produce suffi-
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cient data to train robust word representations.

In this paper, we explore the use of an RNN

model to recognize descriptions of patient mo-

bility. We analyze the impact of initializing the

model with word embeddings trained on a vari-

ety of corpora, ranging from large-scale out-of-

domain data to small, highly-targeted in-domain

documents. We further explore several domain

adaptation techniques for combining word-level

information from both of these data sources, in-

cluding a novel nonlinear embedding transforma-

tion method using a deep neural network.

We find that embeddings trained on a very

small set of therapy encounter notes nearly match

the mobility NER performance of representations

trained on millions of out-of-domain documents.

Domain adaptation of input word embeddings

often improves performance on this challenging

dataset, in both precision and recall. Finally,

we find that simpler adaptation methods such as

concatenation and preinitialization achieve high-

est overall performance, but that nonlinear map-

ping of embeddings yields the most consistent per-

formance across experiments. We achieve a best

performance of 69% exact match and over 83%

token-level match F-1 score on the mobility data,

and identify several trends in system errors that

suggest fruitful directions for further research on

recognizing descriptions of patient functioning.

2 Related work

The extraction of named entities in free text has

been one of the most important tasks in NLP and

information extraction (IE). As a result, this track

of research has matured over the last two decades,

especially in the newswire domain for high re-

source languages such as English. Many of the

successful existing NER systems use a combi-

nation of engineered features trained using con-

ditional random fields (CRF) model (McCallum

and Li, 2003; Finkel et al., 2005). NER systems

have also been widely studied in medical NLP,

using dictionary lookup methods (Savova et al.,

2010), support vector machine (SVM) classi-

fiers (Kazama et al., 2002), and sequential models

(Tsai et al., 2006; Settles, 2004). In recent years,

deep learning models have been used in NER

with successful results in many domains (Col-

lobert et al., 2011). Proposed neural network ar-

chitectures included hybrid convolutional neural

network (CNN) and bi-directional long-short term

Evaluation:

[Scoring: 1=totally dependent,

2=requires assistance,

3=requires appliances, 4=totally

independent]ScoreDefinition.

[Ambulation: 4]Mobility

Observations:

Pt is weight bearing: [she

ambulates independently w/o

use of assistive device]Mobility.

Limited to very brief

examination.

Figure 1: Synthetic document with examples of

ScoreDefinition (in blue) and Mobility (in orange).

memory (Bi-LSTM) as introduced by Chiu and

Nichols (2015). State-of-the-art NER models use

the architecture proposed by Lample et al. (2016),

a stacked bi-directional long-short term memory

(Bi-LSTM) for both character and word, with a

CRF layer on the top of the network. In the

biomedical domain, Habibi et al. (2017) used this

architecture for chemical and gene name recog-

nition. Liu et al. (2017) and Dernoncourt et al.

(2017a) adapted it for state-of-the-art note deiden-

tification. In terms of functioning, Kukafka et al.

(2006) and Skube et al. (2018) investigate the pres-

ence of functioning terminology in clinical data,

but do not evaluate it from an NER perspective.

3 Data

Thieu et al. (2017) presented a dataset of 250 de-

identified EHR documents collected from Physi-

cal Therapy (PT) encounters at the Clinical Center

of the National Institutes of Health (NIH). These

documents, obtained from the NIH Biomedi-

cal Translational Research Informatics System

(BTRIS; Cimino and Ayres 2010), were anno-

tated for several aspects of patient mobility, a sub-

domain of functioning-related activities defined

by the ICF; we therefore refer to this dataset as

BTRIS-Mobility. We focus on two types of con-

tiguous text spans: descriptions of mobility status,

which we call Mobility entities, and measurement

scales related to mobility activity, which we refer

to as ScoreDefinition entities.

Two major differences stand out in BTRIS-

Mobility as compared with standard NER data.

The entities, defined for this task as contiguous

text spans completely describing an aspect of mo-

bility, tend to be quite long: while prior NER

datasets such as the i2b2/VA 2010 shared task data

(Uzuner et al., 2012) include fairly short entities

(2.1 tokens on average for i2b2), Mobility entities
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Entity Train Valid Test

Mobility 1,533 467 947

ScoreDefinition 82 24 48

Table 1: Named entity statistics for training, vali-

dation, and test splits of BTRIS-Mobility. Due to

the rarity of ScoreDefinition entities, we use a 2:1

split of training to test data, and hold out 10% of

training data as validation.

are an average of 10 tokens long, and ScoreDefini-

tion average 33.7 tokens. Also, both Mobility and

ScoreDefinition entities tend to be entire clauses

or sentences, in contrast with the constituent noun

phrases that are the meat of most NER. Figure 1

shows example Mobility and ScoreDefinition en-

tities in a short synthetic document. Despite these

challenges, Thieu et al. (2017) show high (> 0.9)

inter-annotator agreement on the text spans, sup-

porting use of the data for training and evaluation.

These characteristics align well with past suc-

cessful applications of recurrent neural models to

challenging NLP problems. For our evaluation on

this dataset, we randomly split BTRIS-Mobility at

document level into training, validation, and test

sets, as described in Table 1.

3.1 Text corpora

In order to learn input word embeddings for NER,

we use a variety of both in-domain and out-of-

domain corpora, defined in terms of whether the

corpus documents include descriptions of func-

tion. For in-domain data, with explicit references

to patient functioning, we use a corpus of 154,967

EHR documents shared with us (under an NIH

Clinical Center Office of Human Subjects deter-

mination) from the NIH BTRIS system.1 A large

proportion of these documents comes from the

Rehabilitation Medicine Department of the NIH

Clinical Center, including Physical Therapy (PT),

Occupational Therapy (OT), and other therapeu-

tic records; the remaining documents are sampled

from other departments of the Clinical Center.

Since BTRIS-Mobility is focused on PT docu-

ments, we also use a subset of this corpus con-

sisting of 17,952 PT and OT documents. Despite

this small size, the topical similarity of these doc-

uments makes them a very targeted in-domain cor-

pus. For clarity, we refer to the full corpus as

1There is no overlap between these documents and the
annotated data in BTRIS-Mobility (T. Thieu, personal com-
munication).

BTRIS, and the smaller subset as PT-OT.

3.1.1 Out-of-domain corpora

As the BTRIS corpus is considered a small train-

ing corpus for learning word embeddings, we also

use three larger out-of-domain corpora, which rep-

resent different degrees of difference from the in-

domain data. Our largest data source is pretrained

FastText embeddings from Wikipedia 2017, web

crawl data, and news documents.2

We also make use of two biomedical corpora for

comparison with existing work. PubMed abstracts

have been an extremely useful source of embed-

ding training in biomedical NLP (Chiu et al.,

2016); we use the text of approximately 14.7 mil-

lion abstracts taken from the 2016 PubMed base-

line as a high-resource biomedical corpus. In ad-

dition, we use two million free-text documents

released as part of the MIMIC-III critical care

database (Johnson et al., 2016). Though smaller

than PubMed, the MIMIC corpus is a large sample

of clinical text, which is often difficult to obtain

and shows significant linguistic differences with

biomedical literature (Friedman et al., 2002). As

MIMIC is clinical text, it is the closest compari-

son corpus to the BTRIS data; however, as MIMIC

focuses on ICU care, the information in it differs

significantly from in-domain BTRIS documents.

4 Methods

We adopt the architecture of Dernoncourt et al.

(2017a), due to its successful NER results on

CoNLL and i2b2 datasets. The architecture, as

depicted in Figure 2, is a stacked LSTM com-

posed of: i) character Bi-LSTM layer that gen-

erates character embeddings. We include this in

our experimentations due to its performance en-

hancement; ii) token Bi-LSTM layer using both

character and pre-trained word embeddings as in-

put; iii) CRF layer to enhance the performance

by taking into account the surrounding tags (Lam-

ple et al., 2016). We use the following values for

the network hyperparameters, as they yielded the

best performance on the validation set: i) hidden

state dimension of 25 for both character and token

layers. In contrast to more common token layer

sizes such as 100 or 200, we found the best val-

idation set performance for our task with 25 di-

mensions; ii) learning rate = 0.005; iii) patience

= 10; iv) optimization with stochastic gradient de-

2fasttext.cc/docs/en/english-vectors
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Figure 2: Bi-LSTM-CRF network architecture

scent (SGD) which showed superior performance

to adaptive moment estimation (Adam) optimiza-

tion technique (Kingma and Ba, 2014).

4.1 Embedding training

We use two popular toolkits for learning word em-

beddings: word2vec3 (Mikolov et al., 2013) and

FastText4 (Bojanowski et al., 2017). We run both

toolkits using skip-gram with negative sampling

to train 300-dimensional embeddings, and use de-

fault settings for all other hyperparameters.5

4.2 Domain adaptation methods

We evaluate several different methods for adapting

out-of-domain embeddings to the BTRIS corpus.

Concatenation In addition to the original

embeddings, we concatenate out-of-domain and

BTRIS/PT-OT embeddings as a baseline, allowing

the model to learn a task-specific combination of

the two representations.

Preinitialization Recent work has found bene-

fits from retraining learned embeddings on a target

corpus (Yang et al., 2017). We pre-initialize both

word2vec and FastText toolkits with embeddings

learned on each of our three reference corpora,

and retrain on the BTRIS corpus using an ini-

tial learning rate of 0.1. Additionally, we use the

regularization-based domain adaptation approach

introduced by Yang et al. (2017) as another base-

line, due to its successful results in improving

3We use word2vec modified to support pre-initialization,
from github.com/drgriffis/word2vec-r.

4github.com/facebookresearch/fastText
5For PT-OT embeddings, due to the extremely small cor-

pus size, we use an initial learning rate of 0.05, keep all words
with minimum frequency 2, and train for 25 iterations.

NER performance. Their method aims to help the

model to differentiate between general and domain

specific terms, using a significance function φ of a

word w. φ is dependent on the definition of w’s

frequency, where in our implementation it is the

word frequency in the target corpora.

Linear transform However, these approaches

suffer from the same limitations as training BTRIS

embeddings directly: a restricted vocabulary and

minimal training data, both due to the size of the

corpus. We therefore also investigate two meth-

ods for learning a transformation from one set

of embeddings into the same space as another,

based on a reference dictionary. Given an out-of-

domain source embedding set and a target BTRIS

embedding set, we use all words in common be-

tween source and target as our training vocabu-

lary.6 We adapt this to the linear transformation

method successfully applied to bilingual embed-

dings by Artetxe et al. (2016), using this shared

vocabulary as the training dictionary.

Non-linear transform As all of our embed-

dings are in English, but from domains that do

not intuitively seem to have a linear relationship,

we also extend the method of Artetxe et al. to a

non-linear transformation. We randomly divide

the shared vocabulary into ten folds, and train a

feed-forward neural network using nine-tenths of

the data, minimizing mean squared error (MSE)

between the learned projection and the true em-

beddings. After each epoch, we calculate MSE on

the held-out set, and halt when this error stops de-

creasing. Finally, we average the learned projec-

tions from each fold to yield the final transforma-

tion function. Following Artetxe et al. (2016), we

apply this function to all source embeddings, al-

lowing us to maintain the original vocabulary size.

Our model is a fully-connected feed-forward

neural network, with the same hidden dimension

as our embeddings. We evaluate with both 1 and

5 hidden layers, and use either tanh or rectified

linear unit (ReLU) activation throughout. Model

structure is denoted in the result; for example, “5-

layer ReLU” refers to nonlinear mapping using a

5-layer network with ReLU activation. We train

with Adam optimization (Kingma and Ba, 2014)

and a minibatch size of 5.7

6We evaluated using subsets of 1k, 2k, or 10k shared
words most frequent in BTRIS, but the best downstream per-
formance was achieved using all pivot points.

7Source implementation available at
github.com/drgriffis/NeuralVecmap
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Corpus Size Toolkit
Mobility ScoreDefinition

Exact match Token match Exact match Token match
Pr Rec F1 Pr Rec F1 Pr Rec F1 Pr Rec F1

Random initialization 67.7 61.8 64.6 84.0 75.9 79.7 86.5 93.4 90.0 97.7 98.9 98.3

WikiNews 16B FT 67.0 64.0 65.4 83.0 80.0 81.5 83.3 93.4 88.2 96.8 99.3 98.0
PubMed 2.6B FT 68.7 65.9 67.2 82.0 84.5 83.2 93.6 91.7 92.6 98.1 97.8 97.9

w2v 64.9 64.7 64.8 77.4 87.7 82.2 90.0 93.8 91.8 97.8 99.6 98.7
MIMIC 497M FT 37.7 10.6 16.5 78.9 21.7 34.0 86.0 90.0 87.8 97.9 97.7 97.8

w2v 71.9 64.9 68.2 84.3 83.0 83.6 91.7 91.7 91.7 96.5 99.6 98.0

BTRIS 74.6M FT 66.8 63.8 65.3 80.6 83.4 82.0 90.2 95.8 92.9 95.9 99.0 97.4
w2v 69.7 63.7 66.7 86.0 79.2 82.4 88.2 93.8 90.9 96.7 99.9 98.3

PT-OT 4.2M FT 68.8 62.5 65.5 84.5 80.2 82.3 92.0 95.8 93.9 97.1 97.7 97.4
w2v 70.8 63.4 67.0 85.8 79.4 82.5 86.3 91.7 88.9 96.3 98.9 97.6

Table 2: Exact and token-level match results on BTRIS-Mobility, using randomly-initialized embeddings

as a baseline and unmodified word2vec (w2v) and FastText (FT) embeddings from different corpora. Size

is the number of tokens in the training corpus.

5 Results

We report exact match results, calculated using

CoNLL 2003 named entity recognition shared task

evaluation scoring (Tjong Kim Sang and De Meul-

der, 2003), which requires that all tokens of an en-

tity are correctly recognized. Additionally, given

the long span of Mobility and ScoreDefinition en-

tities (see Section 3), we evaluated partial match

performance using token-level results. For sim-

plicity, we report only performance on the test set;

however, validation set numbers consistently fol-

low the same trends observed in test data. We de-

note embeddings trained using FastText with the

subscript FT , and word2vec with w2v.

5.1 Embedding corpora

Exact and token-level match results for both Mo-

bility and ScoreDefinition entities are given for

embeddings from each corpus in Table 2. By and

large, the in-domain BTRIS and PT-OT embed-

dings yield higher precision than out-of-domain

embeddings, though this comes at the expense of

recall. word2vec embeddings consistently achieve

better NER performance than FastText embed-

dings from the clinical corpora, although this was

reversed with PubMed, suggesting that further re-

search is needed on the strengths of different em-

bedding methods in biomedical data. The un-

usually poor performance of MIMICFT embed-

dings persisted across multiple experiments with

two embedding samples, manifesting primarily in

making very few predictions (less than 30% as

many Mobility entities other embeddings yielded).

Most notably, despite a thousand-fold reduction

in training corpus size, we see that PT-OT embed-

dings match the performance of PubMed embed-

dings on Mobility mentions and achieve the best

overall performance on ScoreDefinition entities.

Together with the overall superior performance of

PT-OT embeddings even to the larger BTRIS cor-

pus, our findings support the value of using input

embeddings that are highly representative of the

target domain. Nonetheless, MIMIC embeddings

have both the best precision and overall perfor-

mance on Mobility data, despite the domain mis-

match of critical care versus therapeutic encoun-

ters. This indicates that there is a limit to the ben-

efits of in-domain data that can be outweighed by

sufficient data from a different but related domain.

Token-level results follow the same trends as

exact match, with clinical embeddings achiev-

ing highest precision, while PubMed embeddings

yield better recall. As many entity-level errors are

only off by a few tokens, token-level scores are

generally 15-20 absolute points higher than their

corresponding entity-level scores. At the token

level, it is clear that ScoreDefinition entities are ef-

fectively solved in this dataset, with all F1 scores

are above 97.4%. This is primarily due to the reg-

ularity of ScoreDefinition strings: they typically

consist of a sequence of single numbers followed

by explanatory strings, as shown in Figure 1.

5.2 Mapping methods

Table 3 takes a single representative source/target

pair and compares the different results obtained

on recognizing Mobility entities when the NER

model is initialized with embeddings learned us-

ing different domain adaptation methods. In this

case, as with several other source/target pairs we

evaluated, the concatenated embeddings give the

best overall performance, stemming largely from
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Target Source
Concat Preinit Linear 5-layer tanh

Pr Rec F1 Pr Rec F1 Pr Rec F1 Pr Rec F1

BTRISFT

WikiNewsFT 72.2 65.3 68.6 55.0 59.2 57.0 65.1 61.9 63.5 69.3 64.2 66.7
PubMedFT 69.5 65.8 67.6 64.2 66.5 65.4 65.6 60 62.7 66.1 64.5 65.3
PubMedw2v 65.3 65.3 65.3 64.8 65.4 65.1 70.3 65.8 68 66.3 62.6 64.4
MIMICFT 35.0 10.4 16.0 37.8 15.5 22.0 63.7 62.9 63.3 70.3 61.3 65.5
MIMICw2v 67.4 67.6 67.5 68.5 64.6 66.5 66.8 60.3 63.4 69.2 64.3 66.7

PT-OTFT

WikiNewsFT 67.5 63.9 65.6 54.5 57.9 56.1 68.9 63.8 66.2 68.5 63.4 65.8
PubMedFT 62.8 65.1 63.9 61.3 50.2 55.2 62.6 62.6 62.6 68.3 60.1 63.9
MIMICw2v 64.1 66.1 65.1 59.9 61.8 60.8 57.9 54.1 55.9 67.3 63.2 65.1

Table 4: Exact match precision and recall for Mobility entities with word embeddings mapped from each

source to BTRISFT embeddings, using four selected domain adaptation methods. The best-performing

embeddings from each source corpus were also mapped to PT-OTFT embeddings. The best precision,

recall, and F1 achieved with each source/target pair is marked in bold.

Method
Exact match Token match

Pr Rec F1 Pr Rec F1

WikiNewsFT 67.0 64.0 65.4 83.0 80.0 81.5
BTRISw2v 70.0 63.7 66.6 86.0 79.2 81.5

Concatenated 68.6 66.7 67.6 84.3 81.8 83.0
Preinitialized 66.8 64.5 65.6 78.4 86.4 82.2

Linear 72.5 58.9 65 79.1 83 81
1-layer ReLU 69.2 63.2 66.0 83.4 76.9 80.0
1-layer tanh 70.6 61.0 65.5 84.9 75.7 80.1
5-layer ReLU 67.3 61.9 64.5 83.5 76.6 79.9
5-layer tanh 67.9 62.1 64.9 82.1 77.0 79.4

Table 3: Comparison of mapping methods, using

WikiNewsFT as source and BTRISw2v as target.

Results are given for exact entity-level match and

token-level match for test set Mobility entities.

an increase in recall over the baselines. How-

ever, we see that the nonlinear mapping methods

tend to yield high precision: all settings improve

over WikiNews embeddings alone, and the 1-layer

tanh mapping beats the BTRIS embeddings as

well. Reflecting the earlier observed trends of in-

domain data, this is offset by a drop in recall, often

of several absolute percentage points.

These differences are fleshed out further in Ta-

ble 4, comparing four domain adaptation meth-

ods across several source/target pairs. Concate-

nation typically achieves the best overall perfor-

mance among the adaptation methods, but non-

linear mappings yield highest precision in 6 of

the 8 settings shown. Concatenation is also more

sensitive to noise in the source embeddings, as

shown with MIMICFT results, and preinitializa-

tion varies widely in its performance. By contrast,

linear and nonlinear mapping methods are less af-

fected by the choice of source embeddings, yield-

ing more consistent results than preinitialization or

concatenation for a given target corpus. Nonlinear

mappings exhibit this stability most clearly, pro-

ducing very similar results across all settings. The

Source Target Method Pr Rec F1

WikiNewsFT PT-OTw2v Preinit 72.1 66.1 69.0
WikiNewsFT BTRISw2v Linear 72.5 58.9 65
MIMICw2v BTRISFT Concat 67.4 67.6 67.5

Table 5: Best precision, recall, and F1 (exact) for

test set Mobility mentions, with the source/target

pair and domain adaptation method used.

regularization-based domain adaptation method of

Yang et al. (2017) consistently yielded similar

results to preinitialization: for example, an F1

score of 65% when PubMedw2v embeddings are

adapted to BTRIS, as compared to 65.4% using

pre-initialization with word2vec. We therefore

omit these results for brevity.

Comparing both Tables 3 and 4 to the perfor-

mance of unmodified embeddings shown in Ta-

ble 2, we see a surprising lack of overall per-

formance improvement or degradation. While

the different adaptation methods exhibit consistent

differences between one another, only 12 of the 32

F1 scores in Table 4 represent improvements over

the relevant unmapped baselines. Many adapta-

tion results achieve notable improvement in preci-

sion or recall individually, suggesting that differ-

ent methods may be more useful for downstream

applications where one metric is emphasized over

the other. However, several of our results indicate

failure to adapt, illustrating the difficulty of effec-

tively adapting embeddings for this task.

5.3 Source/target pairs

Table 5 highlights the source/target pairs that

achieved the best exact match precision, recall,

and F1 out of all the embeddings we evalu-

ated, both unmapped and mapped. Though each

source/target pair produced varying downstream

results among the domain adaptation methods, a
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couple of broad trends emerged from our analy-

sis. The largest performance gains over unmapped

baselines were found when adapting high-resource

WikiNews and PubMed embeddings to in-domain

representations; however, these pairings also had

the highest variability in results. The most consis-

tent gains in precision came from using MIMIC

embeddings as source, and these were mostly

achieved through the nonlinear mapping approach.

There was no clear trend in the domain-adapted

results as to whether word2vec or FastText em-

beddings led to the best downstream performance:

it varied between pairs and adaptation methods.

word2vec embeddings were generally more con-

sistent, but as seen in Tables 4 and 5, FastText em-

beddings often achieved the highest performance.

5.4 Error analysis

Several interesting trends emerge in the NER er-

rors produced in our experiments. Most generally,

punctuation is often falsely considered to bound

an entity. For example, the following string is part

of a continuous Mobility entity:8

supine in bed with elevated leg,

and was left sitting in bed

However, most trained models separated this at the

comma into two Mobility entities. Unsurprisingly,

given the length of Mobility entities, we find many

cases where most of the correct entity is tagged by

the model, but the first or last few words are left

off, as in

[he exhibits compensatory gait

patterns]Pred as a result]Gold

This behavior is illustrated in the large perfor-

mance difference between entity-level and token-

level evaluation discussed in Section 5.1.

We also see that descriptions of physical activity

without specific evaluative terminology are often

missed by the model. For example, working out

in the yard is a Mobility entity ignored by the

vast majority of our experiments, as is negotiate

six steps to enter the apartment.

5.4.1 Corpus effects

Within correctly predicted entities, we see some

indications of source corpus effect in the results.

Considering just the original, non-adapted em-

beddings as presented in Table 2, we note two

main differences between models trained on out-

of-domain vs in-domain embeddings. In-domain

8Several examples in this section have been edited for dei-
dentification purposes and brevity.

embeddings lead to much more conservative mod-

els: for example, PT-OTw2v only predicts 850

Mobility entities in test data, and BTRISw2v pre-

dicts 863; this is in contrast to 922 predictions

from MIMICw2v and 940 from PubMedw2v. This

carries through to mapped embeddings as well:

adding PT-OT embeddings into the mix decreases

the number of predictions across the board.

Several predictions exhibit some degree of do-

main sensitivity, as well. For example, “fatigue”

is present at the end of several Mobility men-

tions, and both PubMed and MIMIC embeddings

typically end these mentions early. PubMed em-

beddings also append more typical symptomatic

language onto otherwise correct Mobility entities,

such as no areas of pressure noted on skin

and numbness and tingling of arms. MIMIC

and the heterogeneous in-domain BTRIS corpus

append similar language, including and chronic

pain. WikiNews embeddings, by contrast, ap-

pear oversensitive to key words in many Mobility

mentions, tagging false positives such as my wife

(spouses are often referred to as a source of phys-

ical support) and stairs are within range.

5.4.2 Changes from domain adaptation

Domain-adapted embeddings fix some corpus-

based issues, but re-introduce others. Out-of-

domain corpora tend to chain together Mobility

entities separated by only one or two words, as in

[He ambulates w/o ad]Mobility, no

walker observed, [antalgic gait

pattern]Mobility

While source PubMed and WikiNews embeddings

often collapse these to a single mention, adapting

them to the target domain fixes many such cases.

However, some of the original corpus noise re-

mains: PT-OTw2v correctly ignored and chronic

pain after a Mobility mention, but MIMICw2v

mapped to PT-OTw2v re-introduces this error.

The most consistent improvement obtained

from domain adaptation was on Mobility en-

tities that are short noun phrases, e.g. gait

instability, and unsteady gait. Non-adapted

embeddings typically miss such phrases, but

mapped embeddings correctly find many of them,

including some that in-domain embeddings miss.

5.4.3 Adaptation method effects

The most striking difference we observe when

comparing different domain adaptation methods

is that preinitialization universally leads to longer
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Figure 3: Number of words in shared vocabulary with different nearest neighbors in source and domain-

adapted embeddings, using BTRISFT as target. Light hatched bars indicate the number of words whose

new nearest neighbor matches BTRISFT . The dashed line indicates shared vocabulary size.

Source set Source Target Preinit Concat Linear h1 tanh h5 tanh

PubMedFT

ambulating ambulating ambulating ambulating ambulating ambulating worsening
ambulate ambulate ambulate ambulate ambulate ambulate wearing
crutches ambulatory walker crutches crutches crutch complaints

WikiNewsFT

ambulating ambulating pos ambulating cardiopulmonary robotic respiratory
ambulate ambulate 76 ambulate neurosurgical overhead sclerotic

extubation ambulatory acuity ambulatory resuscitation ambulating acupuncture

Table 6: Top 3 nearest neighbors of ambulation in embeddings mapped to BTRISFT using different

adaptation methods. Source and Target are neighbors in the original source and BTRISFT embeddings.

Mobility entity predictions, by both mean and

variance of entity length. Though preinitialized

embeddings still perform well overall, many pre-

dictions include several extra tokens before or af-

ter the true entity, as in the following example:

(now that her leg is healed [she

is independent with wheelchair

transfer]Gold and using her

shower bench)Pred

Preinitialized embeddings also have a strong ten-

dency to collapse sequential Mobility entities.

Both of these trends are reflected in the lower

token-level precision numbers in Table 3.

Comparing nonlinear mapping methods, we

find that a 1-layer mapping with tanh activa-

tion consistently leads to fewer predicted Mobil-

ity entities than with ReLU (for example, 814

vs 859 with WikiNewsFT mapped to BTRISw2v,

917 vs 968 with MIMICw2v mapped to PT-

OTw2v). However, this difference disappears

when a 5-layer mapping is used. Despite

their consistent performance, nonlinear transfor-

mations seem to re-introduce a number of er-

rors related to more general mobility terminology.

For example, he is very active and runs 15

miles per week is correctly recognized by con-

catenated WikiNewsFT and BTRISw2v, but

missed by several of their nonlinear mappings.

6 Embedding analysis

To further evaluate the effects of different do-

main adaptation methods, we analyzed the nearest

neighbors by cosine similarity of each word before

and after domain adaptation. We only considered

the words present both in the dataset and in each of

our original sets of embeddings, yielding a vocab-

ulary of 6,201 words. We then took this vocabu-

lary and calculated nearest neighbors within it, us-

ing each set of out-of-domain original embeddings

and each of its domain-adapted transformations.

Figure 3 shows the number of words whose

nearest neighbors changed after adaptation, us-

ing BTRISFT as the target; all other targets dis-

play similar results. We see that in general,

the neighborhood structure of target embeddings

is well-preserved with concatenation, sometimes

preserved with preinitialization, and completely

disposed of with the nonlinear transformation. In-

terestingly, this reorganization of words to some-

thing different from both source and target does

not lead to the performance degradation we might

expect, as shown in Section 5.

We also qualitatively examined nearest neigh-

bors before and after adaptation. Table 6 shows

nearest neighbors of ambulation, a common Mo-

bility word, for two representative source/target

pairs. Preinitialization generally reflects the

neighborhood structure of the target embeddings,
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but can be noisy: in WikiNewsFT /BTRISFT ,

other words such as therapy and fatigue share am-

bulation’s less-than-intuitive neighbors.

Reflecting the changes seen in Figure 3, the

linear transformation preserves source neighbors

in the biomedical PubMed corpus, but yields a

neighborhood structure different from source or

target with highly out-of-domain WikiNews em-

beddings. Nonlinear transformations sometimes

yield sensible nearest neighbors, as in the single-

layer tanh mapping of PubMedFT to BTRISFT .

More often, however, the learned projection sig-

nificantly shuffles neighborhood structure, and ob-

served neighbors may bear only a distant simi-

larity to the query term. In several cases, large

swathes of the vocabulary are mapped to a single

tight region of the space, yielding the same nearest

neighbors for many disparate words. This occurs

more often when using a ReLU activation, but we

also observe it occasionally with tanh activation.

7 Conclusions

We have conducted an experimental analysis of

recognizing descriptions of patient mobility with

a recurrent neural network, and of the effects of

various domain adaptation methods on recognition

performance. We find that a state-of-the-art re-

current neural model is capable of capturing long,

complex descriptions of mobility, and of recogniz-

ing mobility measurement scales nearly perfectly.

Our experiments show that domain adaptation

methods often improve recognition performance

over both in- and out-of-domain baselines, though

such improvements are difficult to achieve con-

sistently. Simpler methods such as preinitializa-

tion and concatenation achieve better performance

gains, but are also susceptible to noise in source

embeddings; more complex methods yield more

consistent performance, but with practical down-

sides such as decreased recall and a non-intuitive

projection of the embedding space. Most strik-

ingly, we see that embeddings trained on a very

small corpus of highly relevant documents nearly

match the performance of embeddings trained on

extremely large out-of-domain corpora, adding to

the recent findings of Diaz et al. (2016).

To our knowledge, this is the first investigation

into automatically recognizing descriptions of pa-

tient functioning. Viewing this problem through

an NER lens provides a robust framework for

model design and evaluation, but is accompanied

by challenges such as effectively evaluating recog-

nition of long text spans and dealing with complex

syntactic structure and punctuation within relevant

mentions. It is our hope that these initial findings,

along with further research refining the appropri-

ate framework for representing and approaching

the recognition problem, will spur further research

into this complex and important domain.
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