Hu, Y and Lê, K orcid.org/0000-0002-7654-7139 (2022) Asymptotics of the density of parabolic Anderson random fields. Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 58 (1). pp. 105-133. ISSN 0246-0203
Abstract
We investigate the shape of the density ρ(t, x; y) of the solution u(t, x) to stochastic partial differential equation ∂⁄∂tu(t, x) = 1⁄2Δu(t, x) + u ◇ Ẇ(t, x), where Ẇ is a general Gaussian noise and ◇ denotes the Wick product. We mainly concern with the asymptotic behavior of ρ(t, x; y) when y → ∞ or when t → 0+. Both upper and lower bounds are obtained and these two bounds match each other modulo some multiplicative constants. If the initial condition is positive, then ρ(t, x; y) is supported on the positive half line y ∈ [0, ∞) and in this case we show that ρ(t, x; 0+) = 0 and obtain an upper bound for ρ(t, x; y) when y → 0+.
Nous étudions la forme de la densité ρ(t, x; y) de la solution u(t, x) de l’équation différentielle partielle stochastique ∂⁄∂tu(t, x) = 1⁄2Δu(t, x) + u ◇ Ẇ(t, x), où Ẇ est un bruit gaussien général et ◇ désigne le produit Wick. Nous visons principalement au comportement asymptotique de ρ(t, x; y) quand y → ∞ ou quand t → 0+. À la fois des bornes supérieur et inférieures sont obtenues et ces deux bornes correspondent modulo à certaines constantes multiplicatives. Si la condition initiale est positive, alors ρ(t, x;y) est supporté sur la demi-droite positive y ∈ [0, ∞) et dans ce cas nous montrons que ρ(t, x; 0+) = 0 et obtenons une borne supérieure pour ρ(t, x; y) quand y → 0+.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Keywords: | Asymptotic behaviors near infinite and near zero; Density of the law of the solution; Gaussian process; Malliavin calculus; Multiplicative noise; Parabolic Anderson model; Right tail and left tail estimates; Stochastic heat equation |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mathematics (Leeds) > Statistics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 20 Feb 2023 10:47 |
Last Modified: | 20 Feb 2023 12:02 |
Status: | Published |
Publisher: | Institute of Mathematical Statistics |
Identification Number: | 10.1214/21-AIHP1148 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:196313 |