Kwon, W, Pattle, K, Sadavoy, S et al. (149 more authors) (2022) B-fields in Star-forming Region Observations (BISTRO): Magnetic Fields in the Filamentary Structures of Serpens Main. The Astrophysical Journal, 926 (2). 163. ISSN 0004-637X
Abstract
We present 850 μm polarimetric observations toward the Serpens Main molecular cloud obtained using the POL-2 polarimeter on the James Clerk Maxwell Telescope as part of the B-fields In STar-forming Region Observations survey. These observations probe the magnetic field morphology of the Serpens Main molecular cloud on about 6000 au scales, which consists of cores and six filaments with different physical properties such as density and star formation activity. Using the histogram of relative orientation (HRO) technique, we find that magnetic fields are parallel to filaments in less-dense filamentary structures where ${N}_{{{\rm{H}}}_{2}}\lt 0.93\times {10}^{22}$ cm−2 (magnetic fields perpendicular to density gradients), while they are perpendicular to filaments (magnetic fields parallel to density gradients) in dense filamentary structures with star formation activity. Moreover, applying the HRO technique to denser core regions, we find that magnetic field orientations change to become perpendicular to density gradients again at ${N}_{{{\rm{H}}}_{2}}\approx 4.6\times {10}^{22}$ cm−2. This can be interpreted as a signature of core formation. At ${N}_{{{\rm{H}}}_{2}}\approx 16\times {10}^{22}$ cm−2, magnetic fields change back to being parallel to density gradients once again, which can be understood to be due to magnetic fields being dragged in by infalling material. In addition, we estimate the magnetic field strengths of the filaments (BPOS = 60–300 μG)) using the Davis–Chandrasekhar–Fermi method and discuss whether the filaments are gravitationally unstable based on magnetic field and turbulence energy densities.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2022. The Author(s). Published by the American Astronomical Society. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mathematics (Leeds) > Applied Mathematics (Leeds) The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Astrophysics (Leeds) |
Funding Information: | Funder Grant number STFC (Science and Technology Facilities Council) ST/T000287/1 |
Depositing User: | Symplectic Publications |
Date Deposited: | 03 Nov 2022 19:04 |
Last Modified: | 03 Nov 2022 19:04 |
Status: | Published |
Publisher: | American Astronomical Society |
Identification Number: | 10.3847/1538-4357/ac4bbe |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:192249 |