Hurlburt, N.E., Alexander, D. and Rucklidge, A.M. (2002) Complete Models of Axisymmetric Sunspots: Magnetoconvection with Coronal Heating. The Astrophysical Journal, 577 (2). pp. 993-1005. ISSN 1538-4357
Abstract
We present detailed results of numerical experiments into the nature of complete sunspots. The models remain highly idealized but include fully nonlinear compressible magnetoconvection in an axisymmetric layer that drives energy into an overlying, low-B plasma. We survey a range of parameters in which the resulting magnetoconvection displays the formation of pore- and sunspot-like behavior and assess the coronal signatures resulting from the energy generated by the magnetoconvection. The coronal heating is assumed to be a result of the dissipation by an unspecified means of a fraction of the Poynting flux entering the corona. The expected signatures in the EUV and soft X-ray bandpasses of the Transition Region and Coronal Explorer and Yohkoh/SXT, respectively, are examined. This ad hoc coupling of the corona to the subphotospheric region results in a dynamical behavior that is consistent with recent observational results. This agreement demonstrates that even simple coupled modeling can lead to diagnostics for investigations of both subphotospheric sunspot structures and coronal heating mechanisms.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2002 The American Astronomical Society |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mathematics (Leeds) > Applied Mathematics (Leeds) |
Depositing User: | A. M. Rucklidge |
Date Deposited: | 11 Nov 2004 |
Last Modified: | 25 Oct 2016 03:41 |
Published Version: | http://www.journals.uchicago.edu/ApJ/journal/issue... |
Status: | Published |
Refereed: | Yes |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:178 |