Nezamabadi, S, Ghadiri, M orcid.org/0000-0003-0479-2845, Delenne, JY et al. (1 more author) (2022) Modelling the compaction of plastic particle packings. Computational Particle Mechanics, 9 (1). pp. 45-52. ISSN 2196-4378
Abstract
Soft particle materials such as some pharmaceutical and food products are composed of particles that can undergo large deformations under low confining pressures without rupture. The rheological and textural properties of these materials are thus governed by both particle rearrangements and particle shape changes. For the simulation of soft particle materials, we present a numerical technique based on the material point method, allowing for large elasto-plastic particle deformations. Coupling the latter with the contact dynamics method makes it possible to deal with contact interactions between particles. We investigate the compaction of assemblies of elastic and plastic particles. For plastic deformations, it is observed that the applied stress needed to achieve high packing fraction is lower when plastic hardening is small. Moreover, predictive models, relating stress and packing fraction, are proposed for the compaction of elastic and plastic particles. These models fit well our simulation results. Furthermore, it is found that the evolution of the coordination number follows a power law as a function of the packing fraction beyond jamming point of hard particle packings.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © OWZ 2021. This is an author produced version of a paper published in Computational Particle Mechanics. Uploaded in accordance with the publisher's self-archiving policy. |
Keywords: | Material point method · Contact dynamics · Granular materials · Powders · Plastic particles |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemical & Process Engineering (Leeds) |
Funding Information: | Funder Grant number EPSRC (Engineering and Physical Sciences Research Council) EP/R001766/1 |
Depositing User: | Symplectic Publications |
Date Deposited: | 19 Mar 2021 14:06 |
Last Modified: | 17 Jun 2022 13:15 |
Status: | Published |
Publisher: | Springer |
Identification Number: | 10.1007/s40571-021-00391-4 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:172185 |