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Abstract Soft particle materials such as some phar-
maceutical and food products are composed of particles

that can undergo large deformations under low confin-
ing pressures without rupture. The rheological and tex-
tural properties of these materials are thus governed by

both particle rearrangements and particle shape changes.

For the simulation of soft particle materials, we present

a numerical technique based on the Material Point Method,

allowing for large elasto-plastic particle deformations.

Coupling the latter with the Contact Dynamics method
makes it possible to deal with contact interactions be-
tween particles. We investigate the compaction of as-

semblies of elastic and plastic particles. For plastic de-

formations, it is observed that the applied stress needed

to achieve high packing fraction is lower when plastic

hardening is small. Moreover, predictive models, relat-

ing stress and packing fraction are proposed for the

compaction of elastic and plastic particles. These mod-

els fit well our simulation results. Furthermore, it is

found that the evolution of the coordination number

follows a power law as a function of the packing frac-

tion beyond jamming point of hard particle packings.
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1 Introduction

Compaction is one of the most important manufactur-

ing processes of particulate materials, used in a num-

ber of industries, including food, pharmaceutical, chem-

ical, powder metallurgy, ceramic and nuclear industries.

This process transforms loose particulate materials into

a compacted product with a higher packing fraction [1,

2]. During the initial stage of compaction, particles can
rearrange while keeping their initial shapes. Advancing
in compaction process, particles undergo large (elas-

tic and/or plastic) deformations, which cause particle

shape changes. The latter allows achieving high packing

fractions, which considerably exceed the random close

packing (RCP) limit.

In order to understand the compaction process bet-

ter, it can be modelled using two main numerical tech-
niques: i) continuum approach, in which particulate ma-
terials are considered as a continuum medium [3,4,5];
and ii) discrete element modelling, in which the be-

haviour and interaction of individual particles are taken

into account [6,7]. The first method is based on defining

macroscopic constitutive laws taking account of micro-

dynamic information of particles. The discrete element
method (DEM) is generally used in the context of the
second approach. In DEM, particles are assumed to be

slightly deformable through different contact theories

such as the Hertz contact theory, which is only valid up

to about 10% of strain. However, in the context of com-

paction process modelling, this assumption is too crude.

For realistic simulation of compaction, it is hence pri-

mordial to combine a continuum representation of the

particles, allowing for their deformation according to a

prescribed constitutive model, with appropriate contact

interactions between particles [8,9].



2 Saeid Nezamabadi1,2,3 et al.

In this paper, our numerical approach is based on a

parallel implicit material point method (MPM) in asso-
ciation with the contact dynamics (CD) method for the
treatment of frictional contacts between particles [10,9,

11]. Using this approach, we first study the behaviour of

a single plastic particle subjected to axial strain. This

method is then applied to the compaction simulation

of a packing of plastic particles. The packing can reach
high packing fractions beyond the ’jamming’ point by
particle shape changes and still deform plastically. As

we shall see, the particle plastic behaviour affects the

stress level and its evolution during compaction.

In the following, we first briefly introduce the nu-

merical approaches in Sect. 2. Then, Sect. 3 is devoted

to the behaviour of a single particle subjected to dia-

metrical compression. We focus in Sect. 4 on the com-
paction process of packings of plastic particles. We con-
clude with a brief summary of this work.

2 Methodology

In this section, our methodology based on the coupling

of an implicit MPM formulation and the contact dy-

namics method is described briefly. This approach was

introduced in the previous works [10,9,11]. Here, we
present its extension to plastic behaviour in the con-
text of the infinitesimal strain theory.

We consider a domain Ω in R
D, D being the domain

dimension, describing a continuum body. Its conserva-

tion of mass is described by the following continuity

equation:

∂ρ(x, t)

∂t
+∇ (ρ(x, t) · v(x, t)) = 0 in Ω , (1)

and the Cauchy form of conservation of linear momen-
tum for this body is given by the equation:

∇ · σ(x, t) + b(x, t) = ρ(x, t) a(x, t) in Ω . (2)

In the above equations, ρ(x, t), v(x, t), σ(x, t), b(x, t)

and a(x, t) represent, respectively, material density, ve-

locity, Cauchy stress tensor, body force and acceleration
at position x and time t.

The momentum relation (2) must be complemented

with a constitutive relationship, which relates the Cauchy
stress, σ, to the strain tensor, ǫ (ǫ = 1

2
(∇u+t

∇u), u
being the displacement field). Here, we consider a linear

isotropic elastic material model and a rate-independent

elasto-plastic model based on the bilinear isotropic hard-

ening [12]. The latter uses the von Mises yield criteria

coupled with an isotropic work hardening assumption.

It is called bilinear because just two lines define the

stress-strain curve with a transition point defined as

the yield stress σy: one to describe the linear elastic

region with Young’s modulus, E, and another to the
plastic with hardening modulus, H.

In MPM, the continuum body is discretised by a

set of material points with fixed mass. According to

the assumption of the fixed material point mass, the

mass conservation relation (1) is automatically satis-

fied. The MPM can be considered as a finite element

method (FEM) with moving integration points (mate-
rial points) that serve to compute the FEM integrals.
The MPM discretises these integrals through a Dirac
delta function. Hence, the weak form of the momen-

tum relation (2) in its discretised version can be written

in the presence of contact interactions between several

bodies, in the following form:

Manode(t) = f int(t) + f ext(t) + fC(t) , (3)

where anode is the nodal acceleration, f
C represents the

nodal contact force (sse below), and

M =

Np
∑

p=1

mp Np Lumped mass matrix,

f int = −

Np
∑

p=1

Gp σp Vp Internal force vector,

f ext =

Np
∑

p=1

Np bp + fS Sum of body forces and

surface tractions, fS .

In the above relations, mp and Vp are the mass and vol-

ume of a material point p, and Np indicates the num-
ber of material points. Np is the interpolation matrix

(or the shape function matrix) at the material point

p. It relates the quantities associated with the material

points (displacement, position· · · ) to nodal variables of

the element to which the material point belongs. Gp is

the gradient of the shape function Np.

Eq. (3) is solved using an implicit MPM approach

described in the previous work [10]. The nodal solutions

are then projected onto the material points, allowing for

updating the information carried by these points. Note

that the implementation of the plastic constitutive law

in the implicit MPM approach is similar to the finite

element method since the MPM can be considered as

a minor modification of the classical FEM. It is also
worth noting that here, the evolution of the material
point volume Vp is considered to change from time t to

t+∆t as

Vp(t+∆t) = det(I+∇up
t+∆t
t )Vp(t) , (4)

where up
t+∆t
t represents the displacement filed of the

material point p between the times t and t + ∆t and
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I is the second-order identity tensor. This evolution is

based on the finite strain MPM formulation as defined
by [11].

Finally, since our MPM formulation is used to deal

with the soft particle systems, the nodal contact forces
fC between deformable particles are computed using a
multi-mesh contact algorithm coupling with the con-

tacts dynamics method. In the context of multi-mesh
algorithm, each soft particle maps in its proper back-
ground mesh. A contact point at the interface between

two particles may be treated by introducing a common

background mesh with the same type of grids for the

transfer of nodal quantities from proper meshes to the

common mesh. Considering an implicit MPM proce-

dure, the CD method, which is based on an implicit

time-stepping scheme, is a natural choice for the treat-

ment of contact points. For more details about the pre-

sented contact algorithm, see [10,9,11].

3 Diametrical compression of a single

cylindrical particle

Let us first consider the diametrical compression of a

single soft cylindrical particle. Its diameter is D = 60

mm and is compacted between two rigid walls. The top

wall is moved down with a constant velocity of 0.5 m/s
while the bottom wall is fixed. We performed the two-

dimensional MPM simulation in plane strain conditions

to model this problem with a time step of ∆t = 0.1

µs. The computation domain was meshed with four-

node quadrangular elements, and an initial distribution

of four material points per element was used. A cubic

spline interpolation is also used for each individual ma-

terial point and maps the material-point values to nodes

a maximum distance of two grid nodes away in either

direction [13].

As mentioned above, two types of material defor-

mation models are considered: elastic and elasto-plastic

with linear isotropic hardening. For the two deforma-
tion models, Young’s modulus, Poisson’s ratio and den-
sity of the particle are set to E = 10 MPa, ν = 0.45

and ρ = 1000 kg/m3, respectively. For elasto-plastic

one, the yield stress is equal to σy = 0.4 MPa and we

consider three values of hardening H = 0, 1 and 3 MPa.
Fig. 1 shows the Cauchy stress σyy as a function of the

strain εyy. We observe a linear behaviour for the elastic
particle though the particle has a cylindrical shape. It
may be explained by the small imposed deformation;

i.e., ε < 0.17. For the elasto-plastic particles, a linear

response until σyy ≃ 0.4 MPa, which corresponds to the

yield stress σy and a linear plastic behaviour beyond.
The slope of the plastic parts increases as hardening

augments.

0. 0.05 0.1 0.15
0

0.5

1

1.5

2

2.5

εyy

σ
y
y
(M

P
a
)

Plastic H = 0 MPa

Plastic H = 1 MPa

Plastic H = 3 MPa

Elastic

Fig. 1: The stress-strain diagrams for the single elas-

tic and elasto-plastic (with several values of hardening)

particles subjected to diametrical compression.

4 Uniaxial compression of an assembly of

cylindrical shape particles

In this section, the MPM simulations are carried out
to investigate the compaction of an assembly of elasto-

plastic soft cylindrical particles. The assembly contains
300 disks confined inside a rectangular box in which
only the top wall is mobile and moves down with a con-

stant velocity of 2 m/s. It allows the uniaxial compres-

sion of the assembly. Its initial configuration is prepared

using DEM simulations. To avoid long-range ordering,

a uniform distribution of the particles by volume frac-

tions in the range [2, 4] mm is introduced. The same
material responses as for the single particle analysis,

reported above, are considered. In the MPM simula-

tions, the time step is set to be ∆t = 0.1 µs and no

friction is introduced. The gravitational acceleration is

also set to be zero to avoid stress gradients.

Fig. 2 shows initial configuration and snapshots of

the compact state of the assembly for the elastic and

elasto-plastic behaviours. Due to particle shape changes,

the whole space is nearly filled at the end of the com-

paction process and so, the packing fraction (Φ = VS/V ,
where VS is the volume of particles and V the total vol-

ume) increases. We observe that the shapes of the parti-

cles change gradually from circular to polygonal and the

plastic particles at the end have a polygonal shape with

larger curvatures in comparison with the elastic parti-

cles; see the zoom on the deformed packings in Fig. 2.

Indeed, the plasticity allows these particles overfill the

pores for much lower stress than the elastic ones.

In order to highlight the above feature, the mean

value of maximum curvature of the particles κ and the
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(a) Initial state: Φ = 0.78 (b) Elastic

(c) Plastic H=3 MPa (d) Plastic H=1 MPa (e) Plastic H=0 MPa

Fig. 2: A snapshot of the initial configuration (a); Snapshots of the compacted packings of particles with elastic

and elasto-plastic behaviors (with three values of the hardening parameterH) at packing fraction of Φ = 0.97, and
zoom on the particles inside a bottom-right window of the deformed packings (b-e).

packing fraction Φ as a function of the applied stress

σ is presented in Fig. 3. σ is computed from the con-

tact forces acting on the bottom wall. As mentioned
above, the plastic particles achieve higher values of κ

by smaller applied stress σ than the elastic particles.

We also observe that for the plastic particles, when the
hardening H decreases, the curvature κ increases; i.e.

one needs less applied stress to fill the pores of a par-
ticulate system under compression when the hardening

of plastic particles is small. This point also features in
the evolution of the packing fraction Φ as a function of

the applied stress σ. A nonlinear behaviour for the elas-

tic and plastic particles with different rates is observed.
To compress the elastic particles packing, we require a

larger force than for the plastic particles, and the re-

quired force increases for the plastic particles when the

hardening augments.

In Fig. 3, we also observe that the plastic results di-

verge from the elastic ones for σ & 0.35MPa. This value

is smaller than the yield stress of one plastic particle

(σy = 0.4MPa) since not all the particles in the packing

undergo plastic deformation at the same time. More-

over, for all cases, a regime change is observed around

the packing fraction of 0.8. This change point can be
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Fig. 3: The mean value of maximum curvature κ of

the particles normalised by their mean diameter < d >

(a) and the packing fraction Φ (b) as a function of the

applied stress σ for elastic and elasto-plastic material
behaviours.

considered as the jamming point, i.e. Φc ≃ 0.8. Above

this point, particle rearrangement is negligible and the

particle shape change controls essentially the packing

evolution. One can hence assume that the packing be-

haviours beyond the jamming point are almost like a

continuum medium. Considering the P-wave modulus

definition, this assumption allows obtaining the applied

stress σ as a function of the cumulative vertical strain ε

(ε = ln(h/hi), with h as the current height of the pack-

ing and hi its initial height) for the elastic particles:

σ − σc = M eff(ε− εc) , (5)

where σc and εc are, respectively, the applied stress and

the vertical strain at the jamming point, and M eff de-

notes the effective elastic P-wave modulus to be defined.

Based on Eq. (5), one may relate σ to the packing frac-

tion Φ and the mean coordination number Z for the
elastic particles (see Appendix 1):

σ = −

M eff

1 + Meff

c1KZΦ

(ln(Φ) + c2) , (6)

where K denotes the particle bulk modulus (K = λ+µ

in 2D, with λ and µ as Lamé parameters), c1 repre-
sents a constant parameter depending on the particle

material behaviour and c2 is a constant term. Note that

since Z can also be defined as a function of Φ (see be-

low, Eq. (17)), σ is only related to the packing fraction
Φ via Eq. (6).

In our previous work [11], considering the Voigt rule

of mixtures gives M eff = ΦM with M as the par-

ticle P-wave modulus. Here, we consider the packing

behaviours beyond the jamming point as a continuum

porous medium. M eff can hence be defined like the ef-

fective elastic P-wave modulus for a porous material:

M eff =
Geff(4Geff

− Eeff)

3Geff
− Eeff

. (7)

Here, Eeff is the effective Young’s modulus given by
[14]:

Eeff = E

(

1−
p

pc

)fE

, (8)

and the effective shear modulus is [15]:

Geff = G

(

1−
p

pc

)fG

, (9)

where p is the porosity (p = 1− Φ), fE and fG denote

the characteristic components for Young’s and shear
moduli, and pc is the critical porosity, below which the

effective Young’s and shear moduli become zero. This

corresponds to below and near the jamming point.

The above relations are defined for the elastic par-

ticles. To consider the plastic deformation, the applied
stress σ may be decomposed into an elastic part σe and

a plastic one σp as follows:

σ = (1− fp)σe + fpσp , (10)

where fp is the plastic volume fraction defined as the

ratio between the volume of the plastic regions of parti-
cles and their total volume. During compaction process,

fp is zero before the jamming, but beyond the jamming
point, it is proportional to the vertical strain (hence,

the packing fraction). One can therefore assume that

fp increase logarithmically as a function of Φ/Φc:

fp = α ln(
Φ

Φc

) , (11)

where α is a constant parameter to be determined.

Moreover, the plastic stress σp can be defined in the
following form by considering Eqs. (5) and (6):

σp = σy +M eff
p (ε− εc) , (12)
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σp = σy −
M eff

p

1 +
Meff

p

c1pKpZΦ

(ln(Φ) + c2p) , (13)

with

M eff
p =

Geff
p (4Geff

p − Eeff
p )

3Geff
p − Eeff

p

. (14)

Eeff
p = Ep

(

1−
p

pc

)fEp

, (15)

Geff
p = Gp

(

1−
p

pc

)fGp

. (16)

Here, Ep is the plastic tangent modulus related to H
through: Ep = EH/(E +H) and Gp denotes the plas-

tic shear modulus: Gp = Ep/2(1 + νp). Note that, by

assuming that the volume change due to plastic defor-

mation is negligible, one concludes the equality of the

elastic and plastic Poisson’s ratios; i.e. νp = ν.

In order to determine several parameters in the elas-

tic and plastic models (Eqs. (5), (6) and (10)), we con-

sider first the elastic simulation results, allowing set-

ting the elastic parameters. In a similar vein, one can

determine the plastic parameters from one of the plas-

tic simulation results by fixing the obtained elastic pa-

rameters. In Fig. 4, we observe that the predictions of

the elastic and plastic models are in good agreement

with all MPM simulations by fixing fE = fEp
= 1.2,

fG = fGp
= 0.2 and pc = 0.201(≃ 1−Φc), c1 = c1p = 1,

c2 = c2p = 0.23(≃ − ln (Φc)) and α = 2.5. Neverthe-

less, at high packing fractions, a divergence between

the models and the numerical simulations is noticeable.

To reproduce well the predictions, the particles dis-

cretisation may be refined in order to resolve correctly

the small radii of curvature at the contact zones be-
tween particles. In consequence, to reproduce the com-
paction results, on needs to determine four parameters

in the analytical models as well as the jamming state.

Moreover, the general feature of the curves shown in

Fig. 4 is more or less similar to the typical compaction

curves observed in industrial applications [16,17,18,5]
and the presented empirical model seems to reproduce
well these results. However, this model still needs to be
validated with a more detailed and quantitative com-

parison between simulations and experiments.

The evolution of the mean coordination number Z
beyond the jamming point as a function of the packing

fraction is presented in Fig. 5. As shown in the previ-

ous works (e.g.,[19,20,21,11]), the excess coordination

number Z − Zc normalised by Z1 − Zc behaves as a

power-law as a function of the excess packing fraction

Φ− Φc normalised by Φ1 − Φc:

Z − Zc

Z1 − Zc

=

√

Φ− Φc

Φ1 − Φc

, (17)

where Z1 and Φ1 corresponds to any state after the

jamming point. We observe that the elastic and plastic
results are unified and fitted by the model (17) inde-

pendent of the material behaviours.

5 Concluding remarks

This paper presents a compaction study of elasto-plastic
soft-particle systems using a numerical approach devel-

oped in our previous works [10,9,11]. This parallelised

technique is based on coupling of an implicit formula-

tion of the Material Point Method (MPM) for individ-

ual particles and the Contact Dynamics (CD) method

for the treatment of contact interactions. The MPM al-

lows accounting for the realistic mechanical behaviour

of individual particles, including elastic and plastic be-

haviours. Here, we consider the particle behaviour as a

rate-independent elasto-plastic model based on the bi-

linear isotropic hardening. A diametrical compaction of

one single particle was performed to illustrate the po-

tential of this method to simulate contact interactions

between soft elsto-plastic particles.

The MPM-CD approach is then used to simulate

the uniaxial compaction of an assembly of soft particles

(disks). Obviously, the disks do not represent real parti-

cle shapes in industrial applications. But the developed

approach can be easily applied to more complex particle

shapes [10]. The packings with plastic particles can un-
dergo large deformations at a lower compressive stress
in comparison with elastic particles. It is due to the oc-
currence of weaker stress chains between particles. How-

ever, the required compressive stress to achieve high

packing fractions increases with hardening for plastic

particles. We observed a logarithmic variation of this

stress beyond the jamming state with packing frac-
tion for elastic and plastic particles. A model based on
porous materials was introduced in order to explain this
behaviour. This model reproduced well the numerical

results with four parameters to fix. Since the consid-

ered particles were nearly incompressible (ν = 0.45), it
is interesting to verify and adjust this model for differ-

ent ranges of compressible particles. An experimental

study is also required to validate the proposed model.

Finally, it was shown that the coordination number is

related to the packing fraction by a power-law function

beyond the jamming transition.
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Fig. 4: The excess applied stress σ − σc as a function of packing fraction Φ and excess strain ε − εc for elastic

and elasto-plastic (with three values of hardening, H) particles by MPM simulations. σc and εc correspond to the

jamming point Φc ≃ 0.8. The lines show the predicted behaviours beyond jamming by the compaction models

introduced in this paper; see Eqs. (5), (6) and (10).
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Appendix 1: Relation between the applied stress,

σ, and the packing fraction, Φ, for an elastic

packing under uniaxial compression

We assume that the packing of particles behaves almost

as a continuum porous medium beyond the jamming

point under uniaxial compression. Hence, in this range

the applied stress σ may be related to the cumulative
vertical strain ε through an effective P-wave modulus

M eff:

σ = M effε . (18)

One may further assume that the particle bulk modulus

K relates the volume increment dVS of particles to the

effective stress increment dσS in particles:

K
dVS

VS

= −dσS . (19)

σ can be related to σS as follows:

σ = c1ZΦσS , (20)

where c1 is a material constant to be determined. Given

that dε = dVS/VS − dΦ/Φ and using Eqs. (18), (19)
and (20), the following differential equation to solve is

obtained:

(1 +
M eff

c1KZΦ
)dσ =

[

M eff

c1KZΦ
(
dZ

Z
+

dΦ

Φ
) +

dM eff

M eff

]

σ −M eff dΦ

Φ
.

(21)

By knowing that M eff and Z are related to Φ (see

Eqs. (7) and (17)), the integration of the differential
equation (21) yields:

σ = −

M eff

1 + Meff

c1KZΦ

(ln(Φ) + c2) , (22)

where c2 is the integral constant.
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