Lefroy, KS, Murray, BS orcid.org/0000-0002-6493-1547 and Ries, ME orcid.org/0000-0002-8050-3200 (2021) Advances in the use of microgels as emulsion stabilisers and as a strategy for cellulose functionalisation. Cellulose, 28 (2). pp. 647-670. ISSN 0969-0239
Abstract
Microgel particles have recently emerged as an alternative route to emulsion stabilisation. Classed as soft colloidal particles, their ability to swell to differing degrees in certain solvents and to rearrange once attached to an interface makes them highly suitable for systems requiring long-term stabilization, such as formulations in the food, agricultural, cosmetic and pharmaceutical industries. Microgels made with biocompatible polymers such as proteins and polysaccharides in particular offer an environmental advantage and currently form a very active area of research. Cellulose, being a natural, biodegradable polymer, is an attractive ingredient for gels and microgels. However, its use as a functional material is often somewhat hindered by its insolubility in water and most other organic solvents. Furthermore, the surface activity of cellulose has proven difficult to harness and therefore its ability to act as an emulsion stabiliser has been almost exclusively applied to oil-in-water (O/W) emulsions, with very few reports on its water in oil (W/O) activity. This review aims to summarise some of the recent progress made in the microgel field including their ability to act as emulsion stabilisers, with a focus on cellulose microgels (CMGs). A brief overview of cellulose processing is also given, describing the dissolution and reprecipitation routes used to functionalise cellulose without covalent modification and the potential for cellulose particles and CMGs to act as O/W and W/O emulsion stabilisers.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Cellulose Microgel Stabiliser Emulsion Ionic liquid |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Soft Matter Physics (Leeds) The University of Leeds > Faculty of Environment (Leeds) > School of Food Science and Nutrition (Leeds) > FSN Colloids and Food Processing (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 03 Feb 2021 16:03 |
Last Modified: | 25 Jun 2023 22:34 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Identification Number: | 10.1007/s10570-020-03595-8 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:170689 |
Download
Filename: Lefroy2021_Article_AdvancesInTheUseOfMicrogelsAsE.pdf
Licence: CC-BY 4.0