Miles, J. orcid.org/0000-0002-1080-768X, Turner, J., Jacques, R. orcid.org/0000-0001-6710-5403 et al. (2 more authors) (2020) Using machine-learning risk prediction models to triage the acuity of undifferentiated patients entering the emergency care system: a systematic review. Diagnostic and Prognostic Research, 4. 16.
Abstract
Background
The primary objective of this review is to assess the accuracy of machine learning methods in their application of triaging the acuity of patients presenting in the Emergency Care System (ECS). The population are patients that have contacted the ambulance service or turned up at the Emergency Department. The index test is a machine-learning algorithm that aims to stratify the acuity of incoming patients at initial triage. This is in comparison to either an existing decision support tool, clinical opinion or in the absence of these, no comparator. The outcome of this review is the calibration, discrimination and classification statistics.
Methods
Only derivation studies (with or without internal validation) were included. MEDLINE, CINAHL, PubMed and the grey literature were searched on the 14th December 2019. Risk of bias was assessed using the PROBAST tool and data was extracted using the CHARMS checklist. Discrimination (C-statistic) was a commonly reported model performance measure and therefore these statistics were represented as a range within each machine learning method. The majority of studies had poorly reported outcomes and thus a narrative synthesis of results was performed.
Results
There was a total of 92 models (from 25 studies) included in the review. There were two main triage outcomes: hospitalisation (56 models), and critical care need (25 models). For hospitalisation, neural networks and tree-based methods both had a median C-statistic of 0.81 (IQR 0.80-0.84, 0.79-0.82). Logistic regression had a median C-statistic of 0.80 (0.74-0.83). For critical care need, neural networks had a median C-statistic of 0.89 (0.86-0.91), tree based 0.85 (0.84-0.88), and logistic regression 0.83 (0.79-0.84).
Conclusions
Machine-learning methods appear accurate in triaging undifferentiated patients entering the Emergency Care System. There was no clear benefit of using one technique over another; however, models derived by logistic regression were more transparent in reporting model performance. Future studies should adhere to reporting guidelines and use these at the protocol design stage.
Registration and funding
This systematic review is registered on the International prospective register of systematic reviews (PROSPERO) and can be accessed online at the following URL: https://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42020168696
This study was funded by the NIHR as part of a Clinical Doctoral Research Fellowship.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
Keywords: | Ambulance service; Emergency department; Machine learning; Triage; Patients |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > School of Health and Related Research (Sheffield) > ScHARR - Sheffield Centre for Health and Related Research |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 13 Oct 2020 15:24 |
Last Modified: | 13 Oct 2020 15:24 |
Status: | Published |
Publisher: | Springer Science and Business Media LLC |
Refereed: | Yes |
Identification Number: | 10.1186/s41512-020-00084-1 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:166276 |