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RESEARCH Open Access

Using machine-learning risk prediction
models to triage the acuity of
undifferentiated patients entering the
emergency care system: a systematic
review
Jamie Miles1* , Janette Turner2, Richard Jacques2, Julia Williams3 and Suzanne Mason2

Abstract

Background: The primary objective of this review is to assess the accuracy of machine learning methods in their

application of triaging the acuity of patients presenting in the Emergency Care System (ECS). The population are

patients that have contacted the ambulance service or turned up at the Emergency Department. The index test is a

machine-learning algorithm that aims to stratify the acuity of incoming patients at initial triage. This is in

comparison to either an existing decision support tool, clinical opinion or in the absence of these, no comparator.

The outcome of this review is the calibration, discrimination and classification statistics.

Methods: Only derivation studies (with or without internal validation) were included. MEDLINE, CINAHL, PubMed and

the grey literature were searched on the 14th December 2019. Risk of bias was assessed using the PROBAST tool and

data was extracted using the CHARMS checklist. Discrimination (C-statistic) was a commonly reported model

performance measure and therefore these statistics were represented as a range within each machine learning

method. The majority of studies had poorly reported outcomes and thus a narrative synthesis of results was performed.

Results: There was a total of 92 models (from 25 studies) included in the review. There were two main triage outcomes:

hospitalisation (56 models), and critical care need (25 models). For hospitalisation, neural networks and tree-based

methods both had a median C-statistic of 0.81 (IQR 0.80-0.84, 0.79-0.82). Logistic regression had a median C-statistic of

0.80 (0.74-0.83). For critical care need, neural networks had a median C-statistic of 0.89 (0.86-0.91), tree based 0.85 (0.84-

0.88), and logistic regression 0.83 (0.79-0.84).

Conclusions: Machine-learning methods appear accurate in triaging undifferentiated patients entering the Emergency

Care System. There was no clear benefit of using one technique over another; however, models derived by logistic

regression were more transparent in reporting model performance. Future studies should adhere to reporting guidelines

and use these at the protocol design stage.
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Introduction
Rationale

Machine learning (ML) can be defined as ‘a set of methods

that can automatically detect patterns in data, and then use

uncovered patterns to predict future data, or to perform

other kinds of decision making under uncertainty’ [1]. To

date, ML has already proven effective at predicting out-

comes for disease specific patients such as predicting bron-

chiolitis in infants and predicting whether trauma patients

require a computerised tomography scan (CT) or have a

cranio-cervical junction injury [2–4]. Other models have

outperformed existing tools such as the Global Registry of

Acute coronary Events (GRACE) and Thrombolysis In

Myocardial Infarction (TIMI) risk tools at predicting cardio-

vascular risk [5, 6].

Initial triage at any stage of the Emergency Care Sys-

tem (ECS) has become challenging due to the increase

in patients with varying levels of acuity [7]. Patients in a

modern ECS have complex needs, which can often span

mental health and social care [8].

Recently, there has been increased interest in combin-

ing ‘artificial intelligence’ with the Emergency Depart-

ment for the purpose of initial triage [9–12]. However,

this has been largely through the use of supervised learn-

ing algorithms, a sub-category of ML techniques [9].

The benefit of using these ML methods is they can iden-

tify non-linear relationships between candidate predic-

tors and the outcome [11]. Furthermore, they can be

embedded into electronic Patient Care Records (ePCR),

removing the labour involved in triage and allowing for

more complex models to be integrated [12].

The application of non-ML triage algorithms has previ-

ously led to the majority of patients being identified as mid-

acuity. The Emergency Severity Index (ESI) is one such ex-

ample [10, 11]. These triage systems can often have a clin-

ical time-cost in their application [7]. In order for the

benefits of triage algorithms to be actualised, the patient

benefit at every acuity level has to be shortened. This means

those with high acuity needs are treated quicker, those who

are likely to be admitted are identified sooner and those

with low acuity needs are discharged faster [10].

Clinical role for the index test

The index test under investigation in this systematic re-

view is any triage model that is applied by a clinician at

the point of entry in the ECS. There are three possible

entry points for patients. The first is when a patient calls

the emergency medical service and is triaged by the

Emergency Operations Centre (EOC). The second entry

point is a face-to-face assessment by a paramedic on-

scene. The third is on arrival to the Emergency Depart-

ment (ED) [13]. A patient may enter at any of these

points and also move through them all, being triaged

multiple times. However the objective at each stage is

the same: to stratify the acuity of an individual patient

and allow the result to modify an ongoing care plan.

Objectives

The primary objective of this review is to assess the ac-

curacy of machine learning methods in their application

of triaging the acuity of patients presenting in the Emer-

gency Care System (ECS).

Methods
This review followed the Preferred Reporting Items for Sys-

tematic Reviews and Meta-Analysis (PRISMA) statement. It

is registered with PROSPERO (CRD42020168696).

Eligibility criteria

Population

All patients presenting to the ECS who require a process

of triage to discern the immediacy of care. The popula-

tion cannot be differentiated by clinical severity or con-

dition prior to the application of the triage tool. This is

due to the index test under investigation being able to

be applied to all incoming patients. The population can

be differentiated by demographic variables such as age,

as it is recognised, there is a difference in service need

between younger and older populations [14–19].

Intervention (index test)

Machine learning algorithms that have been used to de-

rive and internally validate a decision support tool. This

includes commonly used methods such as logistic re-

gression. However, for this review, the application of lo-

gistic regression must extend to making predictions in

future data and not just uncovering patterns. The re-

striction to only derivation and internal validation stud-

ies is to ensure the method under investigation is clearly
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defined as opposed to an existing tool being externally

validated in a subsequent population.

Comparison (reference test)

The reference test in this review is hierarchical. Prefera-

bly, there would be a decision support tool already used

in the clinical setting identified in the paper as a com-

parator. In the absence of such, the study would include

a clinician judgement. However, studies that have no

comparator would also be accepted because derivation

studies can often lack performance comparison with

existing practice.

Outcome

For clarification, outcome has been divided into two

parts. Prediction outcome and accuracy outcome.

Prediction outcome

To be included in this review, the outcome has to be a

triage acuity outcome for emergency care. Each included

study is aiming to make a prediction about how ill a pa-

tient is, or how urgent their care need is. Because the

methods of how these predictions are developed is under

investigation in this systematic review, the prediction

outcome was allowed to be broadened in order to cap-

ture all relevant studies. This may be strictly a triage

level (such as the Emergency Severity Index 5–level) or a

surrogate outcome such as predicting the need for crit-

ical care or hospitalisation.

Model performance

For all the prediction models that have been included, their

performance is described in terms of accuracy metrics

reported in the final model performance. This includes

discrimination (C-statistic), calibration (calibration plot,

calibration slope, Hosmer-Lemeshow) and classification

statistics (sensitivity, specificity, accuracy, positive predictive

value (PPV), negative predictive value (NPV), likelihood

ratio +/−). Some studies have used synonyms such as ‘pre-

cision’ instead of PPV, or ‘recall’ instead of sensitivity. For

clarity in this review, all terms have been aligned to classifi-

cation statistics identified in Steyerberg et al. [20].

Information sources

On the 14th December 2019, the Medical Literature Ana-

lysis and Retrieval System Online (MEDLINE), the Cumu-

lative Index to Nursing and Allied Health Literature

(CINAHL), PubMed and the grey literature were searched.

This included Google scholar and the IEEE arXiv.

Search

A search strategy was developed through iteration and

piloting. It was adapted from key words identified in the

research questions and can be found in the supplementary

material. The search strategy was used for MEDLINE,

CINAHL and PubMed. This can be found in the supple-

mentary material.

The search strategy was for the last 10 years only. This

is due to clinical contexts and computer capabilities be-

ing rapidly changing industries and thus older studies

have a higher risk of being void or outdated. The search

also encompassed only those studies presented in the

English language. This is due to limited access to inter-

pretation services. Any non-English language studies

were excluded at the selection stage.

Study selection

Title screening was performed directly on source sites by

JM and then exported to Endnote (version X9 for Win-

dows) for abstract screening. This was subsequently fully

second screened by JT. Then full text screening was per-

formed by JM, with JT independently reviewing a random

sample of 30% of the chosen included texts. Results were

then compared with any disagreements being resolved by a

third reviewer (SM). The data was selected from the studies

retrieved during the searches using a visual schema trans-

posed from the inclusion and exclusion criteria. This can

be found in the supplementary material. There were four

stages of selection based on the screening results of the

studies. The first involved a population assessment, ensur-

ing the study was set in the emergency care system and the

patients are not differentiated clinically. The second stage

involved intervention screening and ensuring the candidate

variables were measured at triage (entry point). The third

stage involved method screening, which in turn was subdi-

vided into two sections, the first ensuring that machine

learning was used to derive the model, and the second,

ensuring that the methodological outcome was accuracy in

prediction. The final stage involved outcome screening,

ensuring that each selected study was setting out to risk-

stratify patients. There was co-author validation of the

included articles.

Data collection process

Data was extracted using the Critical Appraisal and Data

Extraction for Systematic Reviews of Prediction Modelling

Studies (CHARMS) checklist [21]. This was completed in

Microsoft Excel (2016) by JM. The total spreadsheet was

reviewed by RJ. Any disagreements were mediated by a

third reviewer (JT). Data extracted for each included study

is provided in the supplementary material, as well as de-

tails regarding study quality assessment.

Risk of bias and applicability

Risk of bias and applicability was undertaken using the Pre-

diction model Risk of Bias Assessment Tool (PROBAST)

[22]. A template was accessed at http://www.probast.org/

wp-content/uploads/2020/02/PROBAST_20190515.pdf
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It was completed for each model by JM and then

checked by RJ. Any disagreements were mediated by a

third reviewer (JT).

Diagnostic accuracy measures

The principle diagnostic accuracy measures will be

broadly covering three key areas. These are calibration,

discrimination and classification of the final model within

each study.

Synthesis of results

The included studies were too heterogeneous to under-

take a robust meta-analysis; therefore, a narrative synthe-

sis was performed. This centred on discrimination as the

most reported summary statistic of model performance.

Where derivation and internal validation results have been

presented separately in a model, only the internally vali-

dated performance is included in this review and not the

apparent performance.

The included models were sub-grouped by outcome, and

further by method. Median and IQR was used to illustrate

the spread of the C-statistics within each method. The ana-

lysis plan was informed by the Cochrane Handbook for

Systematic Reviews of Diagnostic Test Accuracy [23].

Results
Study selection

All databases were searched on the 14th December 2019.

There was a total of 712 studies identified from the data-

base searching. This included 257 from MEDLINE, 298

from CINAHL and 150 from PubMed. Seven other

sources from the grey literature were found. After title

and abstract screening, 55 studies were taken through to

eligibility screening. Thirty articles were excluded for the

following reasons: 3 were external validation only, 6 were

not machine learning, 2 were protocol only, 3 were study-

ing the wrong population, 1 was a prognostic factor study,

13 had patients that were already triaged and 2 studies

were not related to triage. This left a total of 25 studies in-

cluded in this review. A PRISMA schematic diagram can

be found below, and the PRISMA checklist can be found

in the supplementary material [24]. Many studies investi-

gated more than one machine learning technique, which

meant that contained within the included studies was a

total of 92 models to examine in this review (Fig. 1).

Study characteristics

The three most common methods were logistic regression

(36 models), tree-based methods (23) and neural networks

(20). Other models included support vector machines (6),

Bayesian models (5), a K-nearest neighbour model and a

unique artificial neuro-fuzzy inference system. Of the 92

models, there were only 13 that were set in the pre-

hospital setting. The rest were set in the ED at the point

of triage. The two main outcomes that were being pre-

dicted by the studies were admission to hospital (53

models) or critical care outcome (28 models). Less com-

mon outcomes that appeared in these studies were pre-

dicting existing triage structures (9 models), and the

prediction of whether a patient would be discharged from

ED (3 models). Table 1 below summarises the key features

of the included studies.

There were 44 models derived in the USA, 18 in

Korea, 14 in Australia, 5 in Spain, 4 in India, 2 in

Malaysia, 2 in Israel and 1 in Taiwan, Scotland and the

Netherlands. Eighty-four models were purely retrospect-

ive using existing registry or cohort data. Only 4 models

included data collection that was prospective and there

were 4 models that did not include whether the data

source was retrospective or prospective. Sixty-three

models were derived using data from multiple sites,

whilst 25 models were developed using a single centre.

Four models failed to publish this information.

Risk of bias and applicability

There was a significant amount of incomplete reporting

within the results. Only four models reported any calibra-

tion, mainly using the Hosmer-Lemeshow statistic [27, 44,

48]. One reported the p value of this, but not the statistic

itself [27]. In terms of discrimination, there were 81

models that reported a concordance statistic (C -statistic),

but of these, only 74 generated confidence intervals

around this statistic. Only 47 models described classifica-

tion statistics; however, these were incongruous between

studies and only 1 study included the amount of true posi-

tive, true negative, false positive and false negative results.

This makes it unfeasible to meta-analyse models which

share the same population and outcome. A summary of

the PROBAST assessment can be found in Fig. 2 and was

adapted from Debray et al. [50]. When applying the PRO-

BAST tool, there were only three studies which could be

considered a low risk of bias [31, 33, 42]. This limits the

benefit of grouping high vs low risk of bias studies. Most

studies had low applicability concern, except for six stud-

ies [26, 30, 38, 41, 46, 49].

Synthesis of results

Hospitalisation outcome

There was a total of 56 models which were predicting

whether the patient was likely to be hospitalised as the out-

come. Of these, 27 used logistic regression (two used the

LASSO penalty term). Twelve studies used a neural net-

work, 10 used a tree-based design, 3 Bayesian methods, 3

support vector machine models and one K-nearest neigh-

bour. Only three models reported calibration in this out-

come group [28, 48]. The most reported result was model

discrimination using the C-statistic (also known as the area

under the ROC curve, or AUC). Whilst the heterogeneity
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between models is too severe to undertake a meta-analysis,

it was possible to cluster results by outcome and method.

Figure 3 illustrates which machine learning methods were

most able to differentiate between those with a positive

outcome and those with a negative. The size of the data

points is a normalised transformation of the sample size

used to derive each model. Neural networks and tree-

based methods both had a median C-statistic of 0.81 with

their interquartile ranges (IQR) being 0.80-0.84 and 0.79-

0.82 respectively. This compares to logistic regression

which had a median C-statistic of 0.80 (IQR 0.74-0.83).

The larger sample sizes generated smaller C-statistics. The

three support vector machine models did not report the C-

statistic. Classification was poorly reported with only 19

models publishing sensitivity and specificity, and only 10 of

these also reporting confidence intervals. Twenty-one

models reported accuracy, but only four of these had

confidence intervals. Please refer to the CHARMS supple-

ment for more details.

Critical illness

There were 28 models that used critical illness as an

outcome measure. Eleven were logistic regression (one

with LASSO penalty), 11 were tree-based and 6 were

neural networks. There was an incongruency with the

precise definition of critical illness, Table 2 highlights

the differences within the definitions. Only one model in

this group reported any calibration. They found that

deep neural networks were the most discriminate with a

C-statistic of 0.89 (95% CI 0.88-0.89). This compared to

logistic regression and random forest modelling which

both had the same result of 0.87 (95% CI 0.86-0.87).

The most common statistic was the C-statistic for dis-

crimination. Figure 4 illustrates which methods were

Fig. 1 Study selection adapted from PRISMA [24].
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most discriminative at predicting a critical care outcome.

As above, the sample size is represented by the size of

the data point. Neural networks had a median of 0.89

(IQR 0.87-0.90) tree based had a median of 0.85 (IQR

0.84-0.88) and logistic regression had a median of 0.83

(IQR 0.80-0.85).

There were only 10 models from two studies that in-

cluded classification metrics such as sensitivity and

Table 1 Study characteristics

Author Year Country Population Outcome Methods
used

Predictors Sample
size

EPV Method of testing

Azeez et al. [25] 2014 Malaysia ED Triage level NN, ANFIS 20 2223 Random split sample
(70:30)

Caicedo-Torres
et al. [26]

2016 Spain ED Discharge LR, SVM, NN 147 1205 Random split sample
(80:20), 10-fCV

Cameron et al.
[27]

2015 Scotland ED Hospitalisation LR 9 215231 Random split sample
(66:33), bootstrapping
(10,000)

Dinh et al. [28] 2016 Australia ED Hospitalisation LR 10 860832 9470 Random split sample
(50:50)

Dugas et al. [29] 2016 USA ED Critical illness LR 9 97000000 525 Random split sample
(90:10), 10f-CV

Golmohammadi
[30]

2016 USA ED Hospitalisation LR, NN 8 7266 460.25 Split sample (70:30)

Goto et al. [31] 2019 USA ED Critical illness,
hospitalisation

LR, LASSO, RF,
GBDT, DNN

5 52037 32.60 Random split sample
(70:30)

Hong et al. [32] 2018 USA ED Hospitalisation LR, GBDT, DNN 972 560486 171.44 Random split sample
(90:10)

Kim, D et al. [33] 2018 Korea Prehospital Critical illness LR, RF, DNN 5 460865 3583.60 10f-CV

Kim, S et al. [34] 2014 Australia ED Hospitalisation LR 8 100123 1074.86 Apparent performance

Kwon et al. (1)
[35]

2018 Korea ED Critical illness,
hospitalisation

DNN, RF 7 10967518 133667.89 Split sample (50:50), +
external validation dataset

Kwon et al. (2)
[36]

2019 Korea ED Critical illness,
hospitalisation

DNN, RF, LR 8 2937078 14047.57 Split sample (50:50)

Levin et al. [37] 2018 USA ED Critical illness,
hospitalisation

RF 6 172726 56.74 Random split sample
(66:33), bootstrapping

Li et al. [38] 2009 USA Pre-hospital Hospitalisation LR, NB, DT,
SVM

6 2784 10f-CV

Meisel et al. [39] 2008 USA Pre-hospital Hospitalisation LR 9 401 Bootstrap resampling
(1000)

Newgard et al.
[40]

2013 USA Prehospital Critical illness CART 40 89261 Cross-validation

Olivia et al. [41] 2018 India ED Triage level DT, SVM, NN,
NB

8 10f-CV

Raita et al. [42] 2019 USA ED Critical illness,
hospitalisation

LR, LASSO, RF,
GBDT, DNN

6 135470 107 Random split sample
(70:30)

Rendell et al.
[43]

2019 Australia ED Hospitalisation B, DT, LR, NN,
NB, KNN

11 1721294 5521 10f-CV

Seymour et al.
[44]

2010 USA Prehospital Critical illness LR 12 144913 156 Random split sample
(60:40)

van Rein et al.
[45]

2019 Netherlands Prehospital Critical illness LR 48 6859 3.4375 Separate external
validation

Wang et al. [46] 2013 Taiwan ED Triage level SVM 6 3000 10f-CV

Zhang et al. [47] 2017 USA ED Hospitalisation LR, NN 25 47200 91.8 10f-CV

Zlotnik et al. [48] 2016 Spain ED Hospitalisation NN 9 153970 614.5 10f-CV

Zmiri et al. [49] 2012 Israel ED Triage level NB, C4.5 4 402 10f-CV

ANFIS Adaptive Neuro-Fuzzy Inference System, B Bayesian Network, CART Classification and Regression Tree, DT Decision Tree, DNN Deep Neural Network, EPV

Events Per Variable, GBDT Gradient Boosted Decision Tree, KNN K-Nearest Neighbours, LR logistic regression, LASSO Least Absolute Shrinkage and Selection

Operator, NB Naïve Bayes, NN Neural Network, RF Random Forest, SVM Support Vector Machine
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Fig. 2 PROBAST assessment summary

Fig. 3 Discrimination for hospitalisation outcome by method
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specificity with their associated confidence intervals [31,

42]. This makes comparison limited.

Discharge outcome

Three models from a single study used discharge related

outcome measures [26]. The study focussed on predicting

patients that would be discharged from the ED, and divert-

ing them to a fast track service. They used logistic regres-

sion, support vector machines and neural networks for

comparison. They did not report discrimination and only

reported limited classification statistics [26]. They found

that the neural network had the most precise estimates

with a PPV (0.85) compared to the support vector machine

and logistic regression (0.83 and 0.82). However, when

examining the reported F1 score (PPV* sensitivity/PPV +

sensitivity), logistic regression reported the most accurate

estimate with an F1 score of 0.85, compared to the support

vector machine (0.82) and the neural network (0.82).

Triage level outcome

Three studies that used machine learning to stratify pa-

tients into existing triage tools, all of which had a high risk

of bias [25, 46, 49]. One focused on the Objective Primary

Triage Scale (OPTS) in Malaysia [25]. This is a three tiered

triage scale of emergent, urgent and non-urgent. They

used neural networks and an artificial neuro-fuzzy infer-

ence system (ANFIS) to make predictions. There was no

model calibration performed and the C-statistic did not

have any confidence intervals. They did report accuracy

and PPV for both methods and found the neural network

had an accuracy of 0.84 (PPV 0.87) which was better per-

forming than the ANFIS method (accuracy 0.6, PPV 0.61)

[25]. Two studies used a local four level triage scale [46,

49]. One used Support Vector Machines with a Principle

Component Analysis and a back propagated neural net-

work, reporting an accuracy of 1.0 and 0.97 respectively

[46]. The results in this study are likely to be biassed. The

Table 2 Critical care outcome definitions between studies

Study Direct ICU Death Direct theatre Direct pPCI Severe sepsis Mechanical intervention ISS > 15 ISS > 16

Dugas et al. ✓ ✓ ✓ ✓

Goto et al. ✓ ✓

Kim D et al. ✓

Kwon et al. ✓ ✓

Kwon et al. (2) ✓

Levin et al. ✓ ✓

Newgard et al. ✓

Raita et al. ✓ ✓

Seymour et al. ✓ ✓ ✓

van Rein et al. ✓

ICU Intensive Care Unit, pPCI primary Percutaneous Coronary Intervention, ISS injury severity score

Fig. 4 Discrimination for critical care outcome by method
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other study which examined a four-tiered triage scale used

a naïve Bayes and a C4.5 tree-based classifier [49]. They

only reported accuracy; however, they found that when

they simplified the scale to be two grades, both models

had higher prediction (average accuracy 71.37) than when

it was four grades (52.94).

Discussion
Summary of included studies

In the last 10 years, there has been an increase in the num-

ber of prediction models that have utilised already existing

methods in statistics and computer science. This may be

due to the widespread availability of data worldwide. This

systematic review identified 25 studies which aimed to

derive a risk prediction model for triaging the acuity of

undifferentiated patients in the emergency care system.

The most common method was logistic regression with

36 models, but this was followed closely by both tree-

based methods and neural networks. Most studies used

hospital admission as an outcome for prediction. The ob-

jective of this review was to assess the accuracy of differ-

ent machine learning methods. This was challenging due

to differences in reporting how models were developed

and evaluated. Furthermore, the reporting of the majority

of models did not give enough information on model

development, validation and performance which makes a

critical appraisal difficult and a meta-analysis of accuracy

stratified by the method almost impossible.

There have been common pitfalls amongst the included

studies which will be discussed including the reference

standard, the handling of candidate variables, and the ana-

lysis of performance.

The reference standard

In evaluating the performance of a diagnostic model, it is

important to compare the index test (the new model) with

a ‘gold standard’, known as the reference standard. In

practice, this could be subjective such as a clinician mak-

ing a decision or deciding a triage level. Alternatively, it

could be an objective standard such as an ICD-10 classifi-

cation of disease, mortality or a clearly defined event [51].

Most studies that are determining the cross-sectional

acuity of any given patient in emergency care have sub-

jective reference standards. To illustrate, the Emergency

Severity Index (ESI) 5-level triage is almost exclusively

subjective and depends on the clinician undertaking the

triage. A limitation of using this as a reference standard is

inter-rater reliability can widely vary. A meta-analysis has

shown that the inter-rater reliability of the ESI had an un-

weighted kappa of 0.786 (95% CI 0.745-0.821) [52].

Using subjective reference standards could lead to in-

herent problems maintaining the accuracy when trans-

porting the model.

In contrast, Liu et al. undertook a study predicting car-

diac arrest within 72 h of ED attendance [53]. A cardiac

arrest is an empirical outcome measure and can be de-

fined as “the abrupt loss of heart function in a person

who may or may not have been diagnosed with heart

disease” [54]. Liu prospectively collected data on 1386

participants and recorded whether or not they had a car-

diac arrest within 72 h. In this example, the reference

standard is a clearly defined outcome, which is not open

for interpretation or subjectivity, and thus would provide

a reliable benchmark to compare a derived model.

Handling of candidate variables

Prior to developing a diagnostic model, it is important to

consider which variables in the data are candidates for the

final model. These candidate variables can be identified not

only through subject knowledge or literature searching but

also through statistical methods of examining the distribu-

tion or weighting [20]. A common problem with the in-

cluded studies was how they reported the identification of

candidate variables. Fifteen of the included studies provided

a clear rationale, with data available at triage being the most

common reason. Two studies used all the variables in the

dataset, and eight studies provided no rationale at all.

It is also important to rationalise why there is a need to

transform continuous variables given that it can be statisti-

cally inappropriate when developing prognostic models and

leads to a significant loss of information [55]. Only 6 studies

kept variables in their original format, whilst the remaining

studies either categorised the variables (such as age) or did

not describe the variables in a level of detail that an assess-

ment could be made. Furthermore, no study elaborated on

the linearity of the continuous variables and reported how

they would model non-linear relationships (such as using

fractional polynomials or restricted cubic splines) [56].

One of the benefits of using machine learning is the

ability of performing feature selection during analysis [1].

The methods of undertaking feature selection can vary ac-

cording to method, but the principle is beneficial to creat-

ing a simple model that can be embedded into practice.

Methods such as deep neural networks can allow for fit-

ting complex non-linear relationships through their archi-

tecture. The more hidden layers, the more complex the

relationships. Univariable screening is not recommended

as it does not account for any important collinearities

between other candidate variables [57]. Despite this, it was

used in 5 of the included studies.

Reporting

The concordance statistic (C-statistic) was the most com-

monly reported and appeared in 81 out of 97 models. The

C-statistic evaluates how discriminative a model is. For ex-

ample, if a pair of subjects were selected at random (one

with the outcome and one without), how often would the
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model classify both subjects correctly [58]. There were no

significant differences in discrimination between methods,

and all reported a range of C-statistics that performed well

(above 0.7). However, reporting how discriminative a

model is does not provide a full picture and the perform-

ance of the model should account for calibration. This is

an assessment of accuracy or more specifically, how well

the predictions matched the observed outcomes in the

data [56]. If studies only report discrimination, then it

does not help troubleshoot poor performance in a trans-

ported model. This is when the model is adopted in a new

setting, such as a new hospital, or new country. Only five

models reported any calibration, and two of these used

the Hosmer-Lemeshow statistic [44, 48]. This is prone to

poor interpretability and can be sensitive to sample size

and grouping [56]. With machine learning methods, mis-

calibration can be adjusted when transporting a model to

a different setting. Further ways to present accuracy are

classification statistics. These include accuracy, sensitivity,

specificity, positive predictive value (PPV), negative pre-

dictive value (NPV), and likelihood ratios.

No studies reported classification statistics in full. If they

had published the true positive, false positive, true nega-

tive and false negative results for their model performance,

a meta-analysis could have been performed [23].

Nearly all the studies had the potential of a high risk

of bias due to the results being incomplete. More infor-

mation is needed in order to make a robust judgement.

The PROBAST statement recommends transparency in

reporting and the transparent reporting of a multivari-

able prediction model for individual prognosis or diag-

nosis (TRIPOD) gives clear guidance on how to achieve

this. Even though machine learning can be perceived as

‘black box’, this axiom is not entirely true. For example,

DNN can obtain a matrix of parameter values and this

can then be subsequently transformed into the ranking

of variable importance. The reporting of model perform-

ance can still be generated [59, 60].

Limitations in this review

This review identified and appraised all available literature;

however, it did not directly contact authors for original

data or further statistics. As such, the level of missing data

in reporting which prevented the generation of a summary

statistic remained throughout. This also had an impact on

the risk of bias assessment. The Excerpta Medica database

(EMBASE) was not used in this review as it was deemed

too similar to MEDLINE.

Conclusion
This systematic review has found that machine learning

methods such as neural networks, tree-based, and logistic

regression designs appear equal at triaging undifferenti-

ated patients. However, the inconsistency and absence of

information has significant implications on the risk of bias

in all studies. Therefore no definitive answer can be drawn

about the most accurate method. Future studies need to

conform to reporting guidelines to ensure transparency

and integrity of the models.
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