Ilas, DC, Baboolal, TG, Churchman, SM et al. (5 more authors) (2020) The osteogenic commitment of CD271+CD56+ bone marrow stromal cells (BMSCs) in osteoarthritic femoral head bone. Scientific Reports, 10. 11145. ISSN 2045-2322
Abstract
Osteoarthritis (OA), the most common joint disorder, is characterised by progressive structural changes in both the cartilage and the underlying subchondral bone. In late disease stages, subchondral bone sclerosis has been linked to heightened osteogenic commitment of bone marrow stromal cells (BMSCs). This study utilised cell sorting and immunohistochemistry to identify a phenotypically-distinct, osteogenically-committed BMSC subset in human OA trabecular bone. Femoral head trabecular bone tissue digests were sorted into CD45-CD271+CD56+CD146-, CD45-CD271+CD56-CD146+ and CD45-CD271+CD56-CD146-(termed double-negative, DN) subsets, and CD45+CD271-hematopoietic-lineage cells served as control. Compared to the CD146+ subset, the CD56+ subset possessed a lower-level expression of adipocyte-associated genes and significantly over 100-fold higher-level expression of many osteoblast-related genes including osteopontin and osteocalcin, whilst the DN subset presented a transcriptionally ‘intermediate’ BMSC population. All subsets were tri-potential following culture-expansion and were present in control non-OA trabecular bone. However, while in non-OA bone CD56+ cells only localised on the bone surface, in OA bone they were additionally present in the areas of new bone formation rich in osteoblasts and newly-embedded osteocytes. In summary, this study reveals a distinct osteogenically-committed CD271+CD56+ BMSC subset and implicates it in subchondral bone sclerosis in hip OA. CD271+CD56+ subset may represent a future therapeutic target for OA and other bone-associated pathologies.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2020. This is an open access article under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) |
Keywords: | Cell biology; Osteoarthritis; Rheumatology; Stem cells |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mechanical Engineering (Leeds) The University of Leeds > Faculty of Medicine and Health (Leeds) > School of Medicine (Leeds) > Institute of Rheumatology & Musculoskeletal Medicine (LIRMM) (Leeds) > Experimental Musculoskeletal Medicine (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 08 Jun 2020 11:52 |
Last Modified: | 25 Jun 2023 22:17 |
Status: | Published |
Publisher: | Nature Research |
Identification Number: | 10.1038/s41598-020-67998-0 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:161635 |