Martínez-Martínez, Antonio J., Tegner, Bengt E., McKay, Alasdair I. et al. (7 more authors) (2018) Modulation of σ-Alkane Interactions in [Rh(L2)(alkane)]+ Solid-State Molecular Organometallic (SMOM) Systems by Variation of the Chelating Phosphine and Alkane:Access to η2,η2-σ-Alkane Rh(I), η1-σ-Alkane Rh(III) Complexes, and Alkane Encapsulation. Journal of the American Chemical Society. pp. 14958-14970. ISSN 1520-5126
Abstract
Solid/gas single-crystal to single-crystal (SC-SC) hydrogenation of appropriate diene precursors forms the corresponding σ-alkane complexes [Rh(Cy2P(CH2)nPCy2)(L)][BArF 4] (n = 3, 4) and [RhH(Cy2P(CH2)2(CH)(CH2)2PCy2)(L)][BArF 4] (n = 5, L = norbornane, NBA; cyclooctane, COA). Their structures, as determined by single-crystal X-ray diffraction, have cations exhibiting Rh···H-C σ-interactions which are modulated by both the chelating ligand and the identity of the alkane, while all sit in an octahedral anion microenvironment. These range from chelating η2,η2 Rh···H-C (e.g., [Rh(Cy2P(CH2)nPCy2)(η2η2-NBA)][BArF 4], n = 3 and 4), through to more weakly bound η1 Rh···H-C in which C-H activation of the chelate backbone has also occurred (e.g., [RhH(Cy2P(CH2)2(CH)(CH2)2PCy2)(η1-COA)][BArF 4]) and ultimately to systems where the alkane is not ligated with the metal center, but sits encapsulated in the supporting anion microenvironment, [Rh(Cy2P(CH2)3PCy2)][COÅBArF 4], in which the metal center instead forms two intramolecular agostic η1 Rh···H-C interactions with the phosphine cyclohexyl groups. CH2Cl2 adducts formed by displacement of the η1-alkanes in solution (n = 5; L = NBA, COA), [RhH(Cy2P(CH2)2(CH)(CH2)2PCy2)(κ1-ClCH2Cl)][BArF 4], are characterized crystallographically. Analyses via periodic DFT, QTAIM, NBO, and NCI calculations, alongside variable temperature solid-state NMR spectroscopy, provide snapshots marking the onset of Rh···alkane interactions along a C-H activation trajectory. These are negligible in [Rh(Cy2P(CH2)3PCy2)][COÅBArF 4]; in [RhH(Cy2P(CH2)2(CH)(CH2)2PCy2)(η1-COA)][BArF 4], σC-H → Rh σ-donation is supported by Rh → σ∗C-H "pregostic" donation, and in [Rh(Cy2P(CH2)nPCy2)(η2η2-NBA)][BArF 4] (n = 2-4), σ-donation dominates, supported by classical Rh(dπ) → σ∗C-H π-back-donation. Dispersive interactions with the [BArF 4]- anions and Cy substituents further stabilize the alkanes within the binding pocket.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2018 American Chemical Society |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Chemistry (York) |
Depositing User: | Pure (York) |
Date Deposited: | 03 Jan 2020 12:20 |
Last Modified: | 16 Oct 2024 16:17 |
Published Version: | https://doi.org/10.1021/jacs.8b09364 |
Status: | Published |
Refereed: | Yes |
Identification Number: | 10.1021/jacs.8b09364 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:155084 |
Download
Filename: jacs.8b09364.pdf
Description: Modulation of σ‑Alkane Interactions in [Rh(L2)(alkane)]+ Solid-State Molecular Organometallic (SMOM) Systems by Variation of the Chelating Phosphine and Alkane: Access to η2 ,η2 ‑σ-Alkane Rh(I), η1 ‑σ-Alkane Rh(III) Complexes, and Alkane Encapsulation
Licence: CC-BY 2.5