Maiti, R, Wagner, R, Martinez Sanchez, NA et al. (7 more authors) (2019) From Macroscopic to Microscopic: Experimental and Computational Methods to Investigate Bio-tribology. In: IFMBE Proceedings. 7th International Conference on the Development of Biomedical Engineering in Vietnam (BME7), 27-29 Jun 2018, Ho Chi Minh City, Vietnam. Springer Verlag , pp. 213-216. ISBN 9789811358586
Abstract
Tribology is an important factor (among other factors) during biological interactions of devices and tissues. The paper discusses how new computational and experimental methods can be used to understand and improve the design and development of medical devices at macro and micro scales to sustain life beyond 50 years. We have used pre-clinical experiments and computational methods to understand interactions between orthopaedic implants at the macro scale. The computational model has been validated with experiments. Now this computational model can predict damage in implants for different patients. One such application was successfully tried and tested in collaboration with University National Autonomous Mexico. This methodology can be used in future to design patient specific, affordable (using 3D printing) and robust implants which will be useful for developing countries like Vietnam, India and Mexico. Improvement of catheter designs is important to reduce damage to the internal tissues while being used for cardiovascular problems. We are developing new experimental techniques (in micro scale) that can be used to understand the interaction of cells with the catheter material. These will help reduce the hospital costs incurred during longer stay of the patients admitted for cardiovascular related problems.
Metadata
Item Type: | Proceedings Paper |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © Springer Nature Singapore Pte Ltd. 2020. This is an author produced version of a paper published in IFMBE Proceedings. Uploaded in accordance with the publisher's self-archiving policy. |
Keywords: | Friction; Wear; Patella femoral joint; Endothelial cells; Catheter |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mechanical Engineering (Leeds) > Institute of Functional Surfaces (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 25 Oct 2019 15:35 |
Last Modified: | 06 Jun 2020 00:39 |
Status: | Published |
Publisher: | Springer Verlag |
Identification Number: | 10.1007/978-981-13-5859-3_38 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:152611 |