Taufiqurrakhman, M, Bryant, MG orcid.org/0000-0003-4442-5169 and Neville, A orcid.org/0000-0002-6479-1871 (2019) Tribofilms on CoCrMo alloys: Understanding the role of the lubricant. Biotribology, 19. 100104. ISSN 2352-5738
Abstract
The tribological activation of a passive metal alloy in an aqueous biological environment have been highlighted by many researchers; better known as bio-tribocorrosion. Tribocorrosion processes, which can be found at a number of metal-based biomedical implant interfaces, can be affected by lubricant species such as proteins, amino acids and salts. To date, researchers have quantified how the presence of organic species and the environment affect the tribological and corrosion process. However, the nature of the bio-films is still broadly to be explored. This study aims to understand how the lubricant - surface interactions influence the evolving frictional, corrosion and material volume loss from CoCrMo alloys and how the formation of any tribo-film at the interface may influence the aforementioned processes. This current research uses reciprocating tribocorrosion tests of CoCrMo surfaces in saline, protein, and protein-free cell culture medium lubricants (0.9% NaCl, 25% Foetal Bovine Serum (FBS) diluted in Phosphate Buffered Saline (PBS), Dulbecco's Modified Eagle Medium (DMEM) and 25% FBS in DMEM solutions). Results show the addition of organic constituents give a better tribology and corrosion performances. XPS confirmed that chemical reactions happened on the tested surfaces. Calcium, phosphorus and sulphur are shown to be catalysed to react in tribology-induced processes and have important roles in tribocorrosion. These results contribute to the understanding of protein-metal interactions occurring in tribofilm formation on wearing surfaces.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | (c) 2019, Elsevier Ltd. All rights reserved. This is an author produced version of a paper published in Biotribology. Uploaded in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mechanical Engineering (Leeds) > Institute of Functional Surfaces (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 24 Sep 2019 10:23 |
Last Modified: | 27 Jul 2020 00:40 |
Status: | Published |
Identification Number: | 10.1016/j.biotri.2019.100104 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:151090 |