Gould, Victoria Ann Rosalind orcid.org/0000-0001-8753-693X, Yang, Dandan, Quinn-Gregson, Thomas David et al. (1 more author) (2019) Semigroups with finitely generated universal left congruence. Monatshefte fur Mathematik. pp. 689-724. ISSN 0026-9255
Abstract
We consider semigroups such that the universal left congruence ω ℓ is finitely generated. Certainly a left noetherian semigroup, that is, one in which all left congruences are finitely generated, satisfies our condition. In the case of a monoid the condition that ω ℓ is finitely generated is equivalent to a number of pre-existing notions. In particular, a monoid satisfies the homological finiteness condition of being of type left-FP 1 exactly when ω ℓ is finitely generated. Our investigations enable us to classify those semigroups such that ω ℓ is finitely generated that lie in certain important classes, such as strong semilattices of semigroups, inverse semigroups, Rees matrix semigroups (over semigroups) and completely regular semigroups. We consider closure properties for the class of semigroups such that ω ℓ is finitely generated, including under morphic image, direct product, semi-direct product, free product and 0-direct union. Our work was inspired by the stronger condition, stated for monoids in the work of White, of being pseudo-finite. Where appropriate, we specialise our investigations to pseudo-finite semigroups and monoids. In particular, we answer a question of Dales and White concerning the nature of pseudo-finite monoids.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © The Author(s) 2019. |
Keywords: | FP,Finitely generated,Left congruences,Monoids,Pseudo-finite,Semigroups |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Mathematics (York) |
Depositing User: | Pure (York) |
Date Deposited: | 05 Feb 2019 17:30 |
Last Modified: | 16 Oct 2024 15:27 |
Published Version: | https://doi.org/10.1007/s00605-019-01274-w |
Status: | Published online |
Refereed: | Yes |
Identification Number: | 10.1007/s00605-019-01274-w |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:142205 |
Download
Filename: Dandan2019_Article_SemigroupsWithFinitelyGenerate.pdf
Description: Dandan2019_Article_SemigroupsWithFinitelyGenerate
Licence: CC-BY 2.5