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Abstract

We consider semigroups such that the universal left congruence w' is finitely gener-
ated. Certainly a left noetherian semigroup, that is, one in which all left congruences
are finitely generated, satisfies our condition. In the case of a monoid the condition
that w* is finitely generated is equivalent to a number of pre-existing notions. In partic-
ular, a monoid satisfies the homological finiteness condition of being of type left-FP
exactly when o' is finitely generated.

Our investigations enable us to classify those semigroups such that ! is finitely gen-
erated that lie in certain important classes, such as strong semilattices of semigroups,
inverse semigroups, Rees matrix semigroups (over semigroups) and completely regu-
lar semigroups. We consider closure properties for the class of semigroups such that w*
is finitely generated, including under morphic image, direct product, semi-direct prod-
uct, free product and 0-direct union. Our work was inspired by the stronger condition,
stated for monoids in the work of White, of being pseudo-finite. Where appropriate,
we specialise our investigations to pseudo-finite semigroups and monoids. In particu-
lar, we answer a question of Dales and White concerning the nature of pseudo-finite
monoids.

Keywords Monoids - Semigroups - Left congruences - Finitely generated - FP; -
Pseudo-finite
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1 Introduction

A finitary condition for a class of (universal) algebras is a condition, defined in the
appropriate language, that is satisfied by atleast all finite members of the class. The con-
cept was introduced and developed in the early part of the last century by Noether and
Artin in their seminal work. Subsequently, finitary conditions have been of enormous
importance in understanding the structure and behaviour of rings, groups, semigroups
and many other kinds of algebras.

The classes of algebras we examine here are those of semigroups and monoids.
The two finitary conditions we focus on may be stated in many different ways and
arise from a variety of sources, as we explain in Sects.2 and 3. The simplest way
of approaching them is via the universal relation on a semigroup S, regarded as a
left congruence. We remark that left ideals of semigroups are associated with left
congruences, but, unlike the case for rings, not every left congruence comes from
a left ideal. Left congruences on a monoid determine all monogenic representations
by left actions on sets, in the standard way. We denote the universal left congruence
relation on a semigroup S by a)g; on occasion, where S is not named, we write more
simply w’. The finitary conditions for S that are the subject of this article are those
of a)g being finitely generated (as a left congruence) and the stronger condition of S
being pseudo-finite. Intuitively, the latter condition puts a bound on the length of the
derivation required to relate two words, using only a finite set of relations; we give a
precise definition in Sect. 2. It is well known and easy to see that if G is a group, then
wé is finitely generated if and only if G is a finitely generated group. The work of
[24] shows that G is pseudo-finite if and only if G is finite. For arbitrary monoids and
semigroups, the situation is much more complex.

A semigroup S is left noetherian if every left congruence is finitely generated;
certainly then a)g is finitely generated. The study of left noetherian semigroups was
introduced by Hotzel in [11] and is still a developing topic [19]. At least in the monoid
case, such a condition has been much exploited in the theory of acts over monoids.
For example, if a monoid M is left noetherian, then every finitely generated left M -act
is finitely presented [20]. As shown in [17], if § is left noetherian, then so is every
subgroup of S. Our condition that a)g is finitely generated may clearly be seen to be
weaker than being left noetherian: it is easy to see that a)ﬁ,, is finitely generated for any
monoid M with zero. More significantly, our characterisations of semigroups S with
a)g being finitely generated have conditions that only refer to some ‘top part’ (merely
the identity in the case of a monoid) and properties of a minimum ideal 7, including
conditions on the subgroups of I.

We remark that many other finitary conditions have been important in the study of
semigroups and monoids, naturally including the properties of being finitely generated
or finitely presented [23], and other finitary conditions on the lattices of one sided con-
gruences, for example [7,8], both of which arise from model-theoretic considerations.

@ Springer



Semigroups with finitely generated universal left...

In the case of a monoid M the condition that a)fw is finitely generated is equivalent
to a number of notions that have arisen from a variety of sources. From a homological
standpoint the concept of being of type left-FP,, was introduced for groups by Bieri [2]
and later extended to monoids [4]. Much of the work into the general property of being
of type left-FP, has been in the case of groups, although a recent shift to monoids can
be seen in [9,10,15,16,21]. Any monoid which possesses a finite complete rewriting
system was shown by Anick [1] to be of type left-FP,, for each n. We refer the reader
to [5] for a wider study. Using work of Kobayashi [15], we show that a monoid M is
of type left-FP; exactly when wﬁ,l is finitely generated. Moreover, a)fv[ being finitely
generated may be stated in terms of the notion of ancestry introduced by White [24].
We present further formulations in Sect. 3.

The notion of being pseudo-finite was introduced in [24] in the language of ancestry.
Theorem 1.7 of [24] shows that for a monoid M the augmentation ideal Z?(M ) is
finitely-generated if and only if M is pseudo-finite. The work in [24] was motivated
by the Dales-Zelazko conjecture, which states that a unital Banach algebra in which
every maximal leftideal is finitely generated is necessarily finite dimensional. Through
constructing links between the conjecture and ancestry, White showed the conjecture
to be true for Banach algebras of the form £! (M) where M is a weakly right cancellative
monoid. In fact, it was a question posed to the second author by Dales and White [6],
concerning the nature of pseudo-finite monoids, that led to this article. We answer the
question in the negative in Example 7.7.

The objective of this paper is to make a comprehensive study of those semigroups
S such that a)g is finitely generated, or S is pseudo-finite. Our results often divide
into two kinds: those for semigroups and those for monoids. On the way we consider
numerous constructions, some of which have been considered before in the monoid
case—see [10] for direct products, [18,22] for retracts and [9] for Clifford monoids.
An important word of warning: the property of being of type left-FP; does not apply
to semigroups. In [9] a semigroup is said to be of type left-FP; if S', the monoid
obtained from S by adjoining an identity if necessary, is of type left-FP;. However, for
semigroups, the property of a)ﬁw being finitely generated and that of wg , being finitely
generated differ considerably; see, for example, Corollaries 6.4 and 6.6.

The paper is organised as follows. In Sect. 2 we list some basic properties for a semi-
group S such that a)§ is finitely generated, and formally introduce the stronger property
of being pseudo-finite. In Sect. 3 we explain the relationships between the conditions
that wg is finitely generated, or S is pseudo-finite, and a number of other notions such
as ancestry, connected right Cayley graphs, type left-FP; and right unitary generation
by a subset. In Sect.4 we consider the closure properties of the class of semigroups
S with a)g being finitely generated, or of S being pseudo-finite, under standard alge-
braic constructions: morphisms, direct products, semidirect products, free products
and O-direct unions. In Sect.5 we focus on inverse semigroups, and establish several
equivalent conditions for an inverse semigroup S for a)g to be finitely generated, or
for S to be pseudo-finite. We end the section by considering our properties for Brandt
semigroups. Section6 extends the results for Brandt semigroups to the much wider
context of arbitrary Rees matrix semigroups over semigroups, with and without a
zero and with or without an adjoined identity; the difference in the cases is striking.
In Sect.7 we return to considering constructions, this time two that are typical to

@ Springer



Y. Dandan et al.

semigroups: those of strong semilattices of semigroups and of Bruck—Reilly exten-
sions. We also answer the question of Dales and White by constructing a particular
semilattice of groups. Finally, in Sect.8, we take a more global view. We consider
semigroups possessing a completely simple minimum ideal (without further restric-
tion), and then specialise to the class of completely regular semigroups (semigroups
which are unions of groups) and then to bands (idempotent semigroups).

We have attempted to make the paper relatively self contained. We give a brief
introduction to Green’s relations in Sect.2. Many of the algebraic constructions we
use will be standard, such as those of direct product or morphism. The details of those
particular semigroups may be found in [13] or in the case of free products, in [3].
Our canonical notation for a semigroup is S and for a monoid is M; the identity of a
monoid M is denoted by 1. We write X to denote a set {(1,x) : x € X} for a subset
X of a monoid M. For any X C S we denote by X2 both the set of pairs X x X and
the set {xy : x, y € S}, depending on the context, which we will always endeavour to
make clear. The identity relation on any set X is denoted by ¢ or tx. Given a subset A
of §? for a semigroup S, the left congruence on S generated by A will be denoted by
either p4 or (A). The set of idempotents of a semigroup S is denoted by E(S).

2 Preliminaries

We make some initial observations surrounding the condition that e is finitely gen-
erated. This leads naturally to the point where we can define the property of being
pseudo-finite. We start with the following well-known result.

Lemma 2.1 [14, Lemma 1.4.37] Let S be a semigroup and A be a subset of S*. Then,
foranya,b € S, a pa b if and only if either a = b or there exists a sequence

a =ticy,1dy = e, ..., thdy = b

where t; € S' and (ci,di) e A UAflforall 1<i<n.

The sequence in the above lemma is referred to as an A-sequence of length n; if
n = 0, we interpret this sequence as being a = b.

Given a pair of left congruences § and 8’ on S, we say that 8 is a principal extension
of 8 if § > & and there exists (a, b) € S* such that § = (8’ U {(a, b)}). Clearly, if &
covers &’ in the lattice of left congruences on S then § is a principal extension of &',
but the converse is not true. This may be easily seen by observing that for any monoid
M with 0, we have that wﬁ,l = (¢t U {1, 0}), but M may have non-trivial proper left
congruences.

The proof of the next lemma is straightforward.

Lemma 2.2 Let S be a semigroup. Then the following are equivalent:

(nH wé is finitely generated;
(2) there is a finite chain 1 = 6o C 8 C -+ C &, = a)ﬁw of left congruences on S
where each §; is a principal extension of §;—1 forall 1 <i <n;
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(3) there exists a finite subset X of S such that a)g = (X2);
(4) there exists a finite subset X of S such that for any x € X, wg = ({x} x X);

. . Y/
5) ](‘({)r}any ;) € § there exists a finite subset X of § such that u € X and wg =
u} x X).

It follows from Lemma 2.2 that, for a semigroup S with a)f; being finitely generated,
we always have a generating set for wé of the form X? for some finite subset X C S.
Moreover, in the case when S is a monoid, we always have a generating set of the
form X = {(1,x) : x € X} for some finite X < S\{1}. We shall make use of this
observation throughout the paper without reference.

Definition 2.3 Let S be a semigroup with a)g being generated by A, where A C §? is
finite. We say that S is pseudo-finite with respect to A if there exists n € N such that
for any a, b € S, there is an A-sequence from a to b of length at most n.

We say that S is pseudo-finite with respect to X if X C S is finite and § is pseudo-
finite with respect to X2.

Remark 2.4 Let S be a semigroup with A C S finite. Then S is pseudo-finite with
respect to A if and only if wg is the union of a finite chain of reflexive, symmetric
relations p’} where a p’} b if there is an A-sequence of length at most n relating a to b.

The following lemma shows that the property of a)g being generated by a finite set,
or of S being pseudo-finite with respect to a finite generating set, is independent of
the given set of generators.

Lemma 2.5 Let S be a semigroup and let a)f9 be finitely generated by H C S2. Suppose
a)g = (K) for some K C S°. Then there exists a finite subset K' of K such that
w§ = (K').

Further, if there exists m € N such that for any a, b € S, there is an H-sequence
Sfrom a to b of length at most m, then there is an m’ € N such that for any a, b € S,
there is a K'-sequence from a to b of length at most m'.

Proof The first statement is well known, but we give a short proof here for completeness
and convenience.
We are given that a)g = (H) = (K). Let (h, k) € H. Then there is a K -sequence
of length n := n(h, k)
h =ticy,t1dy = tea, ..., hd, =k,

where (¢;,d;) € KUK Vand s € S'.
Let

Knp = ({(cl,dl), oo (e, d)YU {(er, dy), ..., (cn, dn)}—l) Nk,

sothat K, 1) € K, |K,k)| < oo and (h, k) € (K, k). Let

K = U Kk
(h,k)yeH
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Since H is finite, K’ is a finite subset of K and it is clear that H C (K’). Thus

w§ = (H) S (K') € o,

giving 0§ = (K’) as required.
Further, suppose there exists m € N such that for any a, b € S, there exists an
H-sequence from a to b of length at most m, that is,

a = sihy, s1ki = s2ha, ..., Sk = b,

where (h;,k;) € HU H™! and 5; € S!. Notice that for each (h,k) € H, there
is a K’-sequence of length n(h, k) for some n € N connecting % to k, and hence
a sequence of the same length connecting uh to uk, for any u € S'. Replace each
(sih;, sik;), 1 < i < m in above sequence with a K’-sequence of length n(h;, k;).
Let

m' =m x max{n(h, k) : (h, k) € H}.

Then there is a K’-sequence from a to b of length at most m’'. O
We make use of Lemma 2.5 in the definition below.

Definition 2.6 A semigroup S is pseudo-finite if it is pseudo-finite with respect to some
finite A € S2, or equivalently, if it is pseudo-finite with respect to some finite X C S.

The following result is essentially folklore (see [24]):

Proposition 2.7 Let G be a group and A C G>. Then:

(H wé is generated by A if and only if G is generated by {a='b : (a, b) € A);
(2) G is pseudo-finite if and only if it is finite.

Let M be monoid and let B C M. Then:
(3) if M is generated by B, then a)fw is generated by B x {1}.

Note that in Proposition 2.7, if A is finite then certainly sois {a~'b : (a, b) € A}.On

the other hand, if we have a finite set C of generators of G, then C x {1} finitely generates

a)eG using (3). We now give a way of extending Proposition 2.7(3) to semigroups.

Lemma 2.8 Let S be a semigroup generated by X C S. Then wg is generated by W2,
where Wy = X U {xy : x,y € X}. Moreover, if X is finite, then so is Wx.

Proof Fix x € X. For xj,Xj, - - - Xxj, € Swherexij € X,1 <j <k, wehave

Xip oo (xikflxik) IOW)z( Xiyp o Xig_y

= Xiy -+ (Xig o Xig_y) IOW}% T IOW)z( Xiy Xiy ,OW}z( Xi PW;( X.
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In the above result, if S = |J,-;, X' for n € N, then clearly there is a bound
on the length of Py -Sequences needed to connect elements of S, so that if X is
finite, then S is finite and demonstrably, § is pseudo-finite. The same comments apply
to Proposition 2.7(3). However, we show in Example 5.5 that there exists a finitely
generated monoid which is not pseudo-finite. On the other hand, if M is any monoid
with 0, it is clear that M is pseudo-finite with respect to {(1, 0)}.

For what follows, it is convenient to recall a few details of Green’s relations on a
semigroup S, and their associated pre-orders; for further information, we recommend
[13]. The relation < is defined on a semigroup S by the rule

a<rb& Sla c S'p.

It is easy to see that <, is a right compatible pre-order, so that the associated equiva-
lence relation L is a right congruence. The relations < and R are defined dually, and
the relations < and J are obtained using principal two-sided ideals. The relation ‘H
is defined as £ N R; any H-class containing an idempotent e is a maximal subgroup,
denoted by H,.

We now make some observations which will be very useful for later sections.

Lemma 2.9 Let S be a non-trivial semigroup such that wg = (A) for some A C S2.
Letc(A) ={x:3(x,y) € A UA—. Then for every s € S there exists some x € c(A)
such that s < x.

Proof As S is non-trivial we have A # {J and then c¢(A) # @. Let s € S and choose
u € Swiths # u. Since s ps u, we have s = tx forsome t € S! and x € c(A), giving
S<rx. O

Proposition 2.10 Let S be a semigroup. Then wg is finitely generated (S is pseudo-
finite) if and only if wél is finitely generated (S is pseudo-finite) and there is a finite
set U C S such that for every a € S we have a < u for some u € U.

Proof 1t suffices to consider the case where S is not a monoid.

Suppose first that a)g is finitely generated by A C S2. The subset U exists by
Lemma 2.9 and clearly w§1 is finitely generated by A U {(1, u)} for any u € S.

Conversely, suppose that U exists as given and wgl is finitely generated. Without
loss of generality we can assume that X generates a)él for some finite X C S. Let
Y = X>U{(u,ux):ucU,x € X}sothat Y C §? and is finite.

Lets,t € S. We know that s px ¢, so there exists an X-sequence

s =tcl,hdy =thep, ... thdy, =t

from s to . Let z; = tjc; for 1 < i < n. Suppose first that no z; = 1 and consider
(tici, t;d;) for 1 <i <n.Clearly t; # 1 and so t; = pu for some p € Slandu e U.
Then (tic;, t;d;) = (puc;, pud;) and (uc;, ud;) € Y. It follows that s py ¢ in this case.
The other situation is where z; = 1 for some 1 < i < n. Let i be least such that
z; = 1. We must have thatt;,_{ =1 =1, =d;_1 = ¢;, so that (¢;_1,d;i—1) = (x, 1)
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and (¢;, d;) = (1, y) for some x, yeX. Then s py t;_1ci—1 = X py y= dit; = Zi+1,
interpreting z,+1 by 7. An inductive argument now completes the proof that s py 7.
The claim involving pseudo-finiteness is clear from the argument above. O

In dealing with semigroups such that a)g is finitely generated we may, where con-
venient, call up the above description involving the monoid S'.

The following result will be particularly useful when considering semigroups with
a minimum ideal.

Lemma 2.11 Let S be a semigroup and let I be a left ideal of S. Then a)g is finitely
generated if and only if there exists a finite subset X of S such that for every a € S
we have some x € X witha <p x and a)‘,Z = px2|ix1. In addition, S is pseudo-finite
if and only if there exists n € N such that for any a, b € I, there is an X*-sequence
from a to b of length at most n.

Proof Suppose that a)g = (X?) for some finite subset X of S. Clearly, a)f = px2lrx1
and it follows from Lemma 2.9 that for every a € § there exists some x € X such that
a <p x. Conversely, let X be a finite subset of § satisfying the required properties.
Fix some u € I and let Y = X U {u}. For each a € S, there exists x € X such that
a <, xandsoa = tx forsomet € S1. It follows from the assumption a)f = px2lrx1
that a = tx py2 tu py2 u as u, tu € I, so that a)g = py2.

The second statement now follows from Lemma 2.5. O

Corollary 2.12 Let S be a monoid and let I be a left ideal of S. Then a)fg is finitely
generated if and only if there exists a finite subset X of S such that wf = px2lixi. In
addition, S is pseudo-finite if and only if there exists n € N such that for anya, b € I,
there is an X 2—sequence from a to b of length at most n.

As a consequence of Lemma 2.11 we obtain the following extension of an existing
result for monoids [9, Proposition 6]. This result also follows from the corresponding
result for monoids in [9], together with Proposition 2.10. In the monoid case clearly
we may drop the condition on the relation <, below. Note also that the converse does
not hold in general, as seen in [9, Example 1].

Corollary 2.13 Let S be a semigroup and I be a left ideal of S. Suppose that wf is
finitely generated (I is pseudo-finite) and there exists a finite subset X of S such that
for every a € S we have some x € X witha <p x. Then wé is finitely generated (S is
pseudo-finite).

Corollary 2.14 The following are equivalent for a semigroup S with zero:

(1) there exists a finite subset X of S such that for every a € S we have some x € X
witha <p x;

2) wé is finitely generated;

(3) S is pseudo-finite.

Proof Clearly, {0} forms an ideal of S, and hence the required result holds by

Lemma 2.11. O

Note that in the above, a)g is generated by X x {0}. In the monoid case, this reduces
to {(1, 0)}, so, as we have already observed:

Corollary 2.15 Any monoid with zero is pseudo-finite.
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3 Alternative conditions for @‘ to be finitely generated

In this section we give a variety of alternative conditions for semigroups and monoids
such that " is finitely generated. For monoids these conditions are already known,
involving the notions of ancestry [24], right Cayley graphs, the homological condition
called type left-FPy, and of being right unitarily generated [15]. We remind the reader
that in [9] a semigroup S is said to be of type left-FPy if and only if the monoid S' is of
type left-FP;. Although we do not attempt to consider here the property of being type
left-FP; for semigroups, we take an essentially different approach to [9]. Namely, for a
semigroup S, we consider the property that a)g is finitely generated, which is a stronger
property than a)gl being finitely generated. Indeed, according to Corollary 2.15, wél
is finitely generated for any semigroup with 0. On the other hand if N is an infinite
null semigroup, then as it has infinitely many maximal left ideals, Corollary 2.14 tells
us that a)fv is not finitely generated.

Our first condition involves the notion of a left M-act over a monoid M.' Let S
be a semigroup and let A be a non-empty set. Then A is a left S-act if there is a map
S x A — A where (s,a) — s -a, such that for all s,7 € § and a € A we have
s-(t-a) = (st)-a.If § = M is a monoid then we also insist that 1 - a = a for
all a € A. The notion of a left M-act A being finitely presented is the standard one
from universal algebra, that is, A is isomorphic to a finitely generated free left M-act
factored by a finitely generated left M-act congruence. The free left M-act on one
generator is isomorphic to M regarded as a left ideal of itself, and as such, a left M-act
congruence is precisely a left congruence on M. For further details of monoid and
semigroup acts we refer the reader to the monograph [14].

Proposition 3.1 Let M be a monoid. Then wﬁ,l is finitely generated if and only if the
trivial left M-act ©y; = {z} is finitely presented.

Proof If a)ﬁ,l is finitely generated then ®y = M/ a)ﬁ,l is finitely presented.
Conversely, if ® ), is finitely presented, then by a standard result of algebra, it has

finite presentation with respect to any set of generators. Thus a)fw, which is the kernel

of the M-act morphism M — ©®yy, is finitely generated. O

For the corresponding result for semigroups we need a little more care. Let S be a
semigroup. We say that an S-act A is quasi-free if A is a disjoint union of copies of S,
where S is regarded as a left ideal of itself. To ease notation, we write A = |, Si,
where §; = {s; : s € S}, s5; =¢t;ifandonlyif i = j and s = ¢, and for any s5; € A
andr € S we have t - 5; = (ts);.

Proposition 3.2 Ler S be a semigroup. Then a)g is finitely generated if and only if the
trivial S-act Oy is isomorphic to a quasi-free S-act A = | J;c; Si where I is finite,
factored by a finitely generated congruence.

Proof If a)g is finitely generated then with / = {i} and identifying A = S| with S we
have § — ®g has kernel a)fg

! The authors are grateful to Professor Nik Ruskuc for this observation.
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Conversely, suppose that ©g = A/p where A = | J;; Si, p = (H) and I and H
are finite. Putting K = {(u, v) : 3(u;, v;) € H forsomei, j € I}, itis easy to see
that px = a)g O

We next consider the notion of ancestry in a monoid due to White [24].

Definition 3.3 [24] Let M be a monoid and let X be a non-empty subset of M. We say
that an element @ € M has an ancestry of length n with respect to X if there exists
a finite sequence (z;)?_; of length n in M such that z; = a, z;, = 1 and for each
1 < i < n there exists x € X such that either z;x = z;_j orz; = z;_1x.

Lemma 3.4 Let M be a monoid and let X be a finite subset of M. Then a)ﬁ/, is (finitely)

generated by X (M is pseudo-finite with respect to X ) if and only if every element of
M has an ancestry (of bounded length) with respect to X.

Proof Suppose that wﬁ,[ = px. For any a € M we have a py 1, so that there exists a

= =1
sequence a = ticy, t1d] = taca, ..., thydy, = 1, where t; € Stand (¢;,d) e XUX

forall 1l <i <n.letzy =a,z, = landz; = t;d; foralll < i < n. If
(ci,di) = (1,x) € X we have z;_; = fjc; = t; and s0 z; = t;d; = zi_1x. On the
other hand, if (d;,¢;) = (1,x) € X then z; = t;d; = t; and s0 z;_] = fjc; = z;x.
Hence (z;)}_; is an ancestry of a with respect to X of length n.

Conversely, suppose that an elementa € M has an ancestry of length n with respect
to X. Then there exists a finite sequence (z,-)?:1 in M suchthat z; = a, z, = 1 and
for 1 < i < n, there exists x € X such that z;x = z;_1 or z; = z;_1x. In the first case,

(zi—1,2i) = (zix, zi) = (zi, zi)(x, 1) and in the second, (z;—1, z;) = (zi—1, 2i—1X) =

(zi—1,zi—1)(1, x). We thus obtain that z; = a, z2, ..., 2z, = 1 is a px -sequence of
length n from a to 1. Hence o', = py.
The statement involving pseudo-finiteness is clear from the above. O

We may restate the concept of ancestry by using right Cayley graphs.

Definition 3.5 Let M be a monoid and X a subset of M (we do not assume that X is
a generating set for M). The right Cayley graph I'" (M, X) of M with respect to X is
defined as follows:

(1) the vertex setis M
(2) there is a directed edge labelled by x € X from a to b, denoted by a 5 b, if
b=ax.

By definition, a right Cayley graph I'" (M, X) is directed. However, underlying any
right Cayley graph is an undirected labelled graph I'], (M, X). We say that I'},(M, X)
is of bounded width if there is n € N such that any two distinct vertices are joined by
a path of length no greater than n; note that this implies I}, (M, X) is connected.

Proposition 3.6 Let M be a monoid and let X be a finite subset of M. Then a)ﬁ,, is

finitely generated by X ifand only if T'], (M, X) is connected. Moreover, M is pseudo-
finite with respect to X if and only if I, (M, X) has bounded width.
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Proof Suppose that a)ﬁ,[ = px. Leta, b € M. Then there exists an X-sequence
a=ticy, tidy = e, ..., thyd, = b

where (c;,d;) € X U 7_1 and t; € M forall 1 <i < n. Notice that for every pair
d; .

(tici, t;d;) we have a path in I'" (M, X) of the form tjc; = t; — t;d; if ¢; = 1, or

tici & t; = t;d; if d; = 1, so that a is connected to b in I'},(M, X).

Conversely, suppose that I';,(M, X) is connected. Suppose there exists an edge
between a pair of elements a and b of S, so that we must have a = bx or b = ax
for some x € X and (a, b) € py. Since any two vertices are connected by a path it
follows that o5 = a)ﬁ,,.

The second claim of the proposition is clear from the above proof. O

Corollary 3.7 Let S be a semigroup. Then a)g is finitely generated (pseudo-finite) if and
only if there exists some finite subset X of S such that I'},(S LX) of S' is connected
(has bounded width), and there is a finite set U < S such that for every a € S we have
a<ruforsomeu € U.

Proof This follows from Propositions 2.10 and 3.6, together with the fact we may
assume that if '/, (S', X) is connected, then 1 ¢ X. ]

Another way to characterise a monoid M with a)ﬁ,, being finitely generated is to
use a connection between right Cayley graphs and the property of being right unitarily
generated. This equivalence was established by Kobayashi [15], together with the
equivalence to the property of M being type left-FP{, as we now briefly explain.
Further details may be found in [15].

Definition 3.8 [15] Let M be a monoid and N be a submonoid of M. Then N is said
to be right unitary if foranyn € N andm € M,

mneN =meN.

Let X be a subset of M and let U" (X) denote the smallest right unitary submonoid
of M containing X. If M = U"(X), then M is said to be right unitarily generated by
X.

Definition 3.9 [15] Let M be a monoid and ZM be the monoid ring of M over the
integers Z. For n > 0, M is of type left-FP,, if there is a resolution

Ay —> A1 —> > Al > A)—>7Z—0

of Z, regarded as a left ZM-module with trivial action, such that Ag, Ay, ..., A, are
finitely generated left ZM -modules.

Our next result, collecting together the equivalent conditions for wﬁ,l to be finitely
generated, follows from Proposition 3.2, Lemma 3.4 and Proposition 3.6, with the
remaining conditions coming from [15, Proposition 2.4, Theorem 2.6].
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Theorem 3.10 Let M be a monoid with a finite subset X. The following conditions are
equivalent:

@) a)ﬁ/, is finitely generated by X ;

(2) the trivial M-act © y is isomorphic to M / px and so is finitely presented;

(3) each element of M has an ancestry with respect to X,

(4) the undirected right Cayley graph I'},(M, X) of M with respect to X is connected;
(5) M is right unitarily generated by X.

Further, M is of type left-FP1 if and only if any (all) of these conditions hold.

Analogous omnibus results also hold for semigroups, and for pseudo-finite monoids
and semigroups. In the case of being right unitarily generated, we would require a
further concept of the number of steps involved in the generation of M.

4 Standard constructions

The aim of this section is to consider several standard constructions and their behaviour
with respect to w’ being finitely generated, and of being pseudo-finite. As usual, there
are two kinds of questions one can ask: whether the class of semigroups with w’ being
finitely generated is closed under a particular construction, and whether the fact that
o' is finitely generated passes down to components of the construction. The properties
we look at include morphisms, direct products, semidirect products, free products and
0-direct unions. We also provide a number of examples.
Our first result is known in the case of a retract of a monoid [21, Theorem 3].

Proposition 4.1 Let S be a semigroup and let T be a morphic image of S. Ifwg is finitely
generated (S is pseudo-finite), then wl} is finitely generated (T is pseudo-finite).

Proof Suppose that a)g = pa for some finite subset A of S and ¢ : § —> T is an
epimorphism. For any u, v € T, there exists s,¢ € S such that s¢p = u and t¢ = v.
Hence there exists a sequence s = syaj, s1b1 = s2a2, ..., S,b, = t where s; € st
and (a;, b;) € AUA~ ! forall 1 <i < n. By applying ¢ to the above sequence, we
have

u=s¢ = (s19)(a19), (s10)(b19) = (520)(A20), . .., (sp0)(bpp) =t =v

giving that w‘é = pap Where Ap = {(ug, vp) : (u,v) € A}. Clearly, if § is pseudo-
finite with respect to A, then T is pseudo-finite with respect to Ag. O

In [10], a direct product of a pair of monoids M and N is shown (in the context of
being of type left-FP) to have the property that a)ﬁ,lX  is finitely generated if and only

if both a)ﬁ,l and a)ﬁ, are finitely generated. We now extend this result to cover pseudo-
finiteness. The first part of the lemma below follows immediately from Proposition 4.1,
by applying the projection morphisms.

Proposition4.2 Let S and T be semigroups. IfngT is finitely generated (S x T is

pseudo-finite) then both a)g and a)[T are finitely generated (pseudo-finite). If S and T
are monoids, then the converse is true.
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Proof Let S and T be monoids such that a)g = py2 and a)ZT = py2 for some finite
subsets X € Sand Y C T. For any (s, t), (u,v) € S x T, we have s = s1ay, s1b1 =

$2a2, ..., Smbm = u wherem € N°, 5; € S!, (a;,b;) € X*>forall 1l <i < m, and
t = tier,idy = tea, ... tydy = v wheren € NO ; € T', (¢;,d;) € Y? for all
l1<i<nlIfn>m,thenweputs,t; =---=s, =spanday,q| =bys1 ==

a, = b, = b,,. Then
(s, 1) = (s1a1, tic1), (s1b1, trdy) = (s2a2, tac2), . . ., (Spbp, thdy) = (u, v),
so that

(S, t)=(51, tl)(alv Cl)s (slr tl)(bl’ d1)=(S2’ t2)(612, 02)7 MRS} (sn’ tn)(bns dn)z(u: U).

A similar discussion holds for n < m, so that a)ng = p(xxy)?- Since the length of

the (X x Y)?-sequence required is no greater than the maximum of m and n, it is clear
that the statement on pseudo-finiteness also holds. O

The converse of Proposition 4.2 does not necessarily hold if we remove the condition
that S and 7" are monoids.

Example 4.3 Let C be the infinite cyclic monoid generated by a. It follows from Propo-
sition 2.7 we have wf. = ps where A = {(a, a*)}.Foranyi € N,if (a,a’) = s(a’, a*)
where s € C? we have s = (1, 1) and (a, a’) = (a’, a*). Lemma 2.9 now says ol .
is not finitely generated.

Let S and T be monoids such that T acts on S. If ¢ - (ss’) = (¢ - s)(¢ - s) for all
t € T and s, s’ € S, then we say that T acts on S by morphisms. In this case we can
form the semidirect product S x T with underlying set § x T and binary operation
given by (s, 1)(s’, ') = (s(¢ - s7), tt"). It is easy to see that § x T is a semigroup, and
if T acts monoidally, thatis, ift - 15 = 1g forallt € T, then S x T is a monoid with
identity (1, 1) := (1g, 17).

Proposition4.4 Let S and T be monoids such that a)g = (U?) and w§ = (V?) for
some finite subsets U € SandV C T. Suppose T acts monoidally on S by morphisms.
Then cog)qT is finitely generated. Moreover, if S and T are pseudo-finite, then so is
SxT.

Proof Let W = P U Q where P = {((s,1),(s',1)) : 5,5/ € U}and Q =
{((1,0), (1,) : t,¢ € V}. We claim that a)ng = (W). For this we notice that
if u € Sisconnectedto 1 € S viaa U2-sequence of length n, then (u, 1) is connected

to (1, 1)in § x T viaa P-sequence of the same length. A similar statement holds for
T and Q. Now let (s,1) € S x T. Then
(s,0) = (s, D(L, 1) pw (s, D(1, 1) = (s, 1) pw (1, 1),

and so the required results hold. O
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Since T is a morphic image of S x T, if a)ng is finitely generated (S x T is
pseudo-finite), then a)‘} is finitely generated (T is pseudo-finite). In the case of a
direct product, we know that if wéx 7 is finitely generated then so is a)fq For arbitrary
semidirect products, this need not hold, as we will see in Example 5.6.

The following example shows that in Proposition 4.4, the action of 7" on § being
monoidal is necessary.

Example 4.5 Let X be a finite set and let X* be the free monoid generated by X. By
Proposition 2.7, a)i* is finitely generated. Let ) be the join semilattice consisting of
all finite subsets of X* including the empty word ¢ under union and let J° = Y U {0}.
Since ) has identity {e} and a zero, a)g;() is finitely generated by Corollary 2.15.
Define an action of X* on )° as follows:

w-0=0,w-A=wA={wa:a € A)forw e X*and A € ).

It is easy to check that this is an action by morphisms, but is not a monoid action
because w - {e} = {w} # {e}. Pt T = W % X*. Let x € X and, for each i € N,
suppose ({€},x") = (B, u)(Y,w;) for some (B, u) € T' and (Y, w;) € T. Then
{e}=BU@u-Y),sothat B=u-Y = {€}, giving u = €, and w; = x’. Hence T has
infinitely many maximal £-classes, and a)‘% is not finitely generated by Lemma 2.9.

For the next result it is convenient to have the notion of length |w| of an element
w in the free product S * T of semigroups S and 7. We say that w has length n if
w = ajaz...a, where, if a; € S (respectively, T), then a; 1 € T (respectively, S).
Notice that |jww’| = |w| + |w'| or [w| + |w'| — 1.

Proposition 4.6 Let S and T be semigroups. Then a)g o7 18 finitely generated if and
only if a)g and a)l} are finitely generated. The semigroup S x T is never pseudo-finite.

Proof Suppose first that wg = py2 and wl} = py2 where U and V are finite. Fixu € U
and v € V and put W = U U V; note that u py2 v. We claim that a)g*T = py2. lfw
is an element of length 1 in S * 7 then either w € §, so that as w p;2 u in S, we also
have w py2 u in S * T; similarly if w € T. Suppose now that n > 1 and any element
of length n — 1 is pyy2-related to u (or, equivalently, tov). Letw = ajaz ...a, € SxT
have length n. By our inductive hypothesis, w py2 aju and w py2 ajv. Since one of
aju, aiv has length 1, we have completed our claim.

Conversely, suppose that a)g . 1s finitely generated by P?2. Consider the monoid
S!. Clearly S embeds into S! and there is the trivial morphism 7 — S that takes
every element of 7 to 1. By the nature of free products, these morphisms can be
simultaneously extended to a morphism from S % T to S! that is clearly onto. By
Proposition 4.1, a)g1 is finitely generated. Either S is trivial, so that clearly a)g is

finitely generated, or we can find distinct s, u € S. In the latter case there exists a P2-
sequence connecting s to u, of which the first step gives s = tc¢ for some t € (S * T)!
and ¢ € P. It follows that (with a natural identification) we have r € S' and ¢ € S.
From Proposition 2.10 we deduce a)g is finitely generated, and similarly for a)(T

To see that S *« T is never pseudo-finite, suppose for contradiction that S x T is
pseudo-finite with respect to P2, and the bound on the length of the P>-sequences
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needed to connect elements of S % T is k. Let i, h” be the lengths of the longest and
shortest elements of P, respectively. Consider € (S« T)! and ¢, d € P. Then

| leel = led| |=| |t] +lel = |t] = d| £ 1| =] || = |d| £ 1| < B —h" + 1.

Let w € S * T have length r where r > k(h' — ht + 1). It is now clear that w cannot
be related to any element of length 1 by a P2-sequence of length k. Thus S T cannot
be pseudo-finite. O

Turning our attention to the case of the monoid free product of two monoids
M ™ N (where, of course, the monoid identities are identified, so that M *™ N =
M % N/{(1p, 1n)), we note from [16, Proposition 4.1] that if M and N are finitely
presented, then a)fw L.my 18 finitely generated if a)fW and a)f\, are. A similar argument to
that in Proposition 4.6 allows us to extend this to arbitrary monoids. The new compli-
cation is that although length is still well defined, the length of a product of w and v
may be less than |w| + |v| — 1, since right cancellative elements at the end of w may
cancel with left cancellative elements at the start of v. Bearing this in mind, we can
adapt the proof of Proposition 4.6 to show:

Corollary 4.7 Let M and N be monoids. Then a)fu wmy 18 finitely generated if and only
if wﬁ,l and a)fv are finitely generated. The monoid M ™ N is never pseudo-finite unless
one of M, N is pseudo-finite and the other is trivial.

Proof The first statement follows as in Proposition 4.6. For the second, suppose for
contradiction that M ™ N is pseudo-finite with respect to P2, and the bound on
the length of the P2-sequences needed to connect elements of M %™ N is k. Let h
be the length of the longest element of P. Notice if @ € M %™ N and b € P then
lab| = |a| + p where —h < p < h. Considert € M %™ N and c,d € P. Then there
exists —h < p,q < h such that |tc| = |¢t| + p and |td| = |t| + ¢, and so

eel = ledl | =1 (el + p) =t +q) |=| p —q |=< 2h.

The proof then follows that of Proposition 4.6 by taking w to have length r > 2kh.
Finally, if neither monoid is trivial then an argument as in Proposition 4.6, adjusted
as indicated above, gives that M ™ N is not pseudo-finite. Without loss of generality
suppose that N is trivial. Then M ™ N is isomorphic to M and so is pseudo-finite if
and only if M is. O

We end this section by considering O-direct unions. We only need consider semi-
groups, since any monoid with 0 is pseudo-finite.

Proposition 4.8 Let S and T be semigroups with zero and let P = S U T be the 0-
direct union of S and T. Then a)f, is finitely generated if and only if both a)g and a)l}
are finitely generated. Moreover, P is pseudo-finite if and only if both S and T are
pseudo-finite.

Proof Recall from Corollary 2.14 that for a semigroup S with zero, a)§ is finitely
generated if and only if S is pseudo-finite.
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If S and T are pseudo-finite, then there are finite subsets U of S (V of T') such that
foreverya € S (b € T) thereissomeu € U (v € V) suchthata <, u (b <, v). Let
W = U U V;itis then clear that for every p € P we have p <, w for some w € W.
Corollary 2.14 gives that P is pseudo-finite.

For the converse, we need only remark that S and 7" are morphic images of P, and
invoke Proposition 4.1. O

By a simple induction argument we note that the result above holds for the 0-direct
union of finitely many semigroups.

5 Inverse semigroups

Inverse monoids M such that a)ﬁ,, is finitely generated were briefly considered in [9] in
the case where M has aleast idempotent. In the case where M is a semilattice of groups,
this latter condition follows from the fact that “’fv[ is finitely generated, however, as we
show, it is not necessary for M to have a least idempotent in order that a)ﬁ,, is finitely
generated. Our focus in this section is to give a complete characterisation of those
inverse semigroups S such that (i) a)fq is finitely generated, and (ii) S is pseudo-finite.

We begin by remarking that if S is an inverse semigroup and wf; is generated by
A C 52, then the universal relation, regarded as a right congruence and denoted by
wY, is generated by A1 = {@',b™") : (a, b) € A} and so wé is finitely generated if
and only if w is finitely generated.

Theorem 5.1 Let S be an inverse semigroup and E (S) be the set of idempotents of S.
Then the following statements are equivalent:

@) a)g is finitely generated;

(2) (i) there is a finite set U C E(S) such that for every e € E(S) we have e < u
for some u € U; and
(ii) there is a finitely generated inverse subsemigroup W of S such that for all
a € Sande € E(W), there exists w € W with aw = ew ™ w;

(3) (i) there is a finite set U C E(S) such that for every e € E(S) we have e < u
for some u € U; and
(iii) there is a finitely generated inverse subsemigroup W of S such that for all
a € S there exists w € W withaw € E(W).

Proof (1) = (2) Condition (i) follows easily from Proposition 2.10 and the fact that
S is inverse.

To show (ii), suppose that a)g = (X?) for some finite subset X C S. Let W be
the subsemigroup of S generated by X U X~! where X! is the set of all inverses of
elements in X. First, we show that, for any a, b € §, a finite sequence

b =s1p1,5191 = S2P2, ..., Sugn = a
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1

where s; € Sl,p,-,q,- € Xforl < i < n, givesas = bs™'s with s =

qlflpn"'Qflpl.Ifn =1, then

—1 —1 -1 1 1 1 -
as =aq; p1 =S1919; p1 =S1p1p, 419, P1 =bp| qiq; p1 =bs Ls.

Suppose that the result holds for n = k. We show the result also holds forn = k + 1.
Here we have

b =s1p1, 5191 = 52P2, - -+, SkGk = Sk+1Pk+1 Sk+1qk+1 = a.

Put siqr = Sk+1pk+1 = c. Then, by induction,

clgr " pe-ar p = bl ok ar P e ok ay o).

Now we have

—1 —1 -1
a(q,  Pk+19; Pk*** 4y P1)
= Sk+16]k+l(qk_+l1pk+lqk_lpk . ~-q1_1p1)
—1 —1 —1 -1
= Skt 1 Phk+1(Pp 1 9k+19) 1 Pk+1) (@ P-4y P1)
= Skr1Pk+1(qg pr---ay PO Peeear p) T
—1 —1 —1 —1
(Pr19k+195 1 Pk+1)(G Pk 41 P1)
=clqy ' pe---ar P0G P gy D!
—1 —1 —1 —1
(Pk+161k+lqk+1pk+1)(qk Pk 4y p1)
= b ' pr---ar PO @ o g )
@7 'pear PO i akn g P0G e ay )
-1 —1 =1, —I -1 -1 -1
=b(q; ' peay P T (P a1 P ) (g e ay )
= blgg} prvrag pe - ar ) TN ey ok gy o).
Choosing b = ¢ € E(W) we have as = es”ls.
(2) = (3) is clear.
(3) = (1) Suppose that W is a finitely generated inverse subsemigroup of S with a
finite set ¥ = Y ! of generators, and U is the set of all idempotents guaranteed by (7).
We show that a)izq = (Hz) where H =Y U U. Let wiw; - - - wy be a finite product of

elementsin Y. Then foreach 1 < i < k there exists some ¢; € U such that w; = wje;,
and so

€] Py2 W1 = wie€l P2 WiW2 P2 -+ Py2 WiW2 -+ - Wi—1

= Wiw) - Wp—1€k—1 P2 WIW2 -« W—] Wk

For any a € S, by assumption, there exists w € W such that aw € W. By taking
e € Usuchthata <, e, wehave a = ae py2 aw py2 e,50 py2 = a)g, as required. O
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Corollary 5.2 Let S be an inverse monoid S. Then a)g is finitely generated if and only
if (i) or (iii) of Theorem 5.1 hold.

Now we specialise Theorem 5.1 to the pseudo-finite case. We first make the follow-
ing observation: if S is an inverse semigroup and the semilattice E(S) of idempotents
of S has least element (zero) e, then H, = eSe. Indeed, for any s € S,

eseRe(ses_l) =ecandese L (s_les)e =e

so that ese H e and so eSe € H,. Clearly, H, C eSe and so H, = eSe.

Proposition 5.3 Suppose that S is an inverse semigroup with semilattice of idempotents
E(S). Then S is pseudo-finite if and only if there is a finite set U C E(S) such that
forevery f € E(S) we have f < u forsomeu € U; E(S) has a least element e, and
the group H-class H, is finite.

Proof Suppose that S is pseudo-finite with respect to X € S. The first condition
follows from Theorem 5.1. For any pair of idempotents f, g € E(S), there exists an
X 2—sequence

g=tic,idi =tca, ... tqdy = f

wheret; € S, (c;, d;) € X2%forl < i < n.Itfollows from the proof of Theorem 5.1 that
fh=gh 'hwhereh = dn’]cn e dflcl.AsSis an inverse semigroup, fh = gh™'h
gives fh(fh)™' = gh~'h(gh™'h)~!, and so fhh~! = gh~'h. Note that every
idempotent f, g € E(S) leads to such an idempotent 2~ /1. As S is pseudo-finite, we
can bound the length of the X2-sequences required and find a finite set H consisting
of those & obtained as above. Let w be the product of all 2~'% such that h € H.
Then fw = gw, and so fgw = gw, giving e = gw is least element for E(S) and
H, = eSe. Further, H, is a morphic image of S viag : § — H, defined by s¢ = ese.
Indeed, forany a, b € S,

aebe = aebb™'be = ab(b_leb)e = abe,
and so
(ap)(bp) = (eae)(ebe) = eaebe = eabe = (ab)e.

By Proposition 4.1, H, is pseudo-finite and hence a finite group by Proposition 2.7.
Conversely, suppose that E(S) has a least element e, H, = eSe is finite and U
exists as given; put Y = H, UU. Foranya € S,

e= (ailea)e = ail(eacf]ae) = cf](eaeafla) = aile(aeafl)a =a 'ea

giving ae = aa~'ea = ea and so eae = ae. Moreover, there exists f € U such that
a <r f,sothata = af py2 ae = eae py>» e. Clearly then S is pseudo-finite with

respectto Y. O
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Clearly in the case of a monoid we may drop the first condition on Proposition 5.3.
We also have the following consequence of Theorem 5.1.

Corollary 5.4 [9, Corollary 4]. Let M be an inverse monoid with a least idempotent e.
Then a)fvl is finitely generated if and only if H, is finitely generated.

Our next example shows that the existence of a least idempotent is not necessary
for w’ to be finitely generated.

Example 5.5 Consider the Bicyclic monoid B. Then a)éB is finitely generated but B is
not pseudo-finite.

Proof Regarding the underlying set of B as N* x NY, it is clear that B is finitely
generated by {(0, 1), (1,0)} and so a)f3 is finitely generated by Proposition 2.7. The
idempotents of B form an infinite descending chain, and thus B is not pseudo-finite
by Corollary 5.4. O

For any monoid M with a finitely generated minimum ideal, we have by [9, Propo-
sition 6] and Proposition 2.7 that a)ﬁ,l is finitely generated. We have seen that a
pseudo-finite inverse semigroup possesses a minimum ideal which is finitely gen-
erated (in fact finite). The following example shows that the same is not true for
inverse semigroups S satisfying the weaker condition that a)g is finitely generated.

Example 5.6 Let G be the infinite cyclic groupon g and let Y = {e; : i € Q} U {1}
be a semilattice, with e¢;e; = e, where k = min{i, j} and 1 is the identity. Define an
action of G on Y by

g 1=1g ¢ =ei;.

It is easy to see that this is an action by morphisms. Let 7 = Y x G, noting that
T forms an E-unitary inverse monoid with identity (1, go). Hence Sect.5.9 of [13]
applies, so that (1, g")~! = (1, g™) and (¢4, g") ™' = (7" ¢4, 8™") = (eg—n. &™)
for each ¢ € Q and n € Z. Let W be the inverse subsemigroup of S generated by
{(1, g), (e1, g)}. Then it is a simple exercise to show that

W = <(17 g)v (1’ g—l)’ (617 g)7 (607 g_1)> = {(17 gl‘l)’ (emv gn) -m,n S Z}v

with E(W) = {(1, &%), (en, g% : n € Z}. Let (A, g") € S.If A = e, for some
p € Qthen take k € Z such that n + k < p, and if A = 1 then take any k € Z. Then
(ex, g™") € Wand

(A, g (e, 87" = (Aenir, 8"7") = (enir 8°) € E(W).

Hence wg is finitely generated by Corollary 5.2.

Note that (A, g") J (B, g") if and only if there exist z, t € Z suchthat g*- A < B
and g’ -B < A If A = e, and B = e, then this can be satisfied for any z,¢ <
min{p — g, q — p}, while if A = B = 1 then this is satisfied for any z, ¢. It follows
that the J-classes of T are J = {(1, g") : n € Z} and S\J. Hence S\J is the unique
proper ideal of S, and is not finitely generated.
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Note that Example 5.6 gives the desired example of a semidirect product S x T
with a)fMT being finitely generated, but such that a)fg is not.

Corollary 5.7 Let E be a semilattice. Then the following statements are equivalent:

(nH a)g is finitely generated;

(2) E is pseudo-finite;

(3) E has a least element and there is a finite set U C E such that for every e € E
we have e < u for someu € U.

Proof (1) = (3) follows from Theorem 5.1 and the fact a finitely generated sub-
semigroup of a semilattice is finite. (3) = (2) is immediate from Proposition 5.3 and
(2) = (1) follows by definition. O

Corollary 5.8 [9, Theorem 9] Let E be a semilattice with identity 1. Then w% is finitely
generated if and only if E is pseudo-finite if and only if E has a least element.

It follows from Theorem 5.1 and Proposition 5.3 that:

Corollary 5.9 Let S = B°(G, I) be a Brandt semigroup over a group G. Then the
following statements are equivalent:

(1) 1 is finite;
2) a)g is finitely generated;
(3) S is pseudo-finite.

Notice that we find another approach to Corollary 5.9 in the next section when
dealing with arbitrary Rees matrix semigroups.

6 Rees matrix semigroups

In this section we examine Rees matrix semigroups M = M[S; I, A; P] and Rees
matrix semigroups with zero M? = MO[S; I, A; P] over a semigroup S. Note that
we make no restriction on the elements of P = (p;;). Of course, if S = G is a
group, then M = M[G; I, A; P] is completely simple, and if every row/column of
P contains a non-zero entry then M? = M°[G; I, A; P]is completely O-simple. We
recall from [9] that completely simple semigroups of type left-FP; were considered,
but the convention in [9] is that one considers the property for the corresponding
monoid obtained by adjoining an identity.

There are four cases for us to consider that arise from the existence or otherwise of
an identity, and the existence or otherwise of a zero:

() T =MIS; 1, A; P
(2) T =MIS; 1, A; P
(3) T =MIS; 1, A; P;
4) T =MJS; 1, A; P].
We discuss each of them in turn and specialise to the case where § is a group. We
conclude with some remarks on the pseudo-finite case.
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The first case is trivial, because any monoid with zero is pseudo-finite by Corollary
2.15.
We now consider the second case.

Theorem 6.1 Let T = MIS; I, A; P] be a Rees matrix semigroup over a semigroup
S. Then a)‘% is finitely generated if and only if the following conditions hold:

(1) I and A are finite;
(2) there is a finite set V. C S such that with

H = {(pvia, pyjb):veNi,jel,a beV},

every element of S is py-related to an element of V.

Proof Suppose that a)eT = (U?) for some finite set U = I’ x V x A’ where I’, V, A’
are finite subsets of 7, S and A, respectively. If T is finite we can take 7 = U and
V = S and we are done. Otherwise, let (i, a, A), (j, b, ) € T be distinct. Then there
exists a U>-sequence

(i9a7 )") = tl(ilralv )\-1)7 tl(.]lv bl’ Ml) = t2(’27 a2’ )"2)’ LR ] tn(]m b)’h Mn) = (.]7 bv H‘)

where 1,, € T' and ((im, am, Am)s Gims by i) € U for all 1 < m < n. Clearly
A= A1 € A, sothat A = A’ is finite. Furthermore, if / is infinite, then we can pick i
and j above as being distinct elements of 7\1’. It is then easy to see that each 7; € T
and reading from left to right the first co-ordinate of each #; is equal to i, which is not
possible in view of the final equality. Hence [ is finite. On the other hand, choosing
i=j,2=p,andb € V, thentakinga € § to be arbitrary we have that a is connected
to an element b’ € V via an H-sequence. Indeed, either z € T for 1 < k < n, in
which case b = b/, or letting k be least with zy = 1, we have a pg ax = b’ € V.

Conversely, suppose that (1) and (2) hold. Let W = {a € S : (a,b) €
H for some b € S}. We claim that a)‘; = (0% where 0 = I x (VUW) x A.
To see this, let (i,a, X) € T.If (i, a, A) € Q we are done. Otherwise, a is connected
via an H-sequence

a = klal, k1b1 = kzaz, ey knbn =b

where b € V. Fix our notation as (a;, b;) = (pyi,u1, ppjv1) € H forall 1 <1 < n.
If every k¢ € S, then we have a Qz—sequence

(i,a,A) = (i, ki, n) G, ur, A), @, ki, n) (i, vi, A)
= (l’ k27 772)(127 u29 )‘4)1 IR ] (ls k}’lv r]n)(jns Uns )") = (13 bv )")

On the other hand, if ¢ is the least occurrence of ky = 1, we have a Qz-sequence

(i, a,r) = (i, ki, n)(r, ur, A), (0, ki, n) (G, v, A)
= (i, k2, m2) (2, uz, M), oo, (@, kg1, me—1) (Je—1, Ve—1,A) = (i, ¢, 1)
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where ¢ € W. In either case, (i, a, A) is Qz-related to an element of Q, completing
the proof. O

Consequently, for the Rees matrix semigroup 7 = M([S; I, A; P],if a)KT is finitely
generated, then P is a finite matrix and a)g is finitely generated. The following example
shows that the converse needs not be true.

Example 6.2 Let S be an infinite monoid with zero, so that a)g is finitely generated by
Corollary 2.15. Let P be the 1 x 1 matrix P = (0). Then T = M[S; 1, 1; P] is an
infinite null semigroup, and thus a)’% is not finitely generated.

Corollary 6.3 Let T = M[G; I, A; P] be a Rees matrix semigroup over a group G.
Then a)eT is finitely generated if and only if I, A are finite, and G is finitely generated.

Proof Suppose that a)eT is finitely generated so that (1) and (2) of Theorem 6.1 hold.
With the notation of that result, for any g € G we have an H-sequence connecting
g to some element v € V, so that by a standard argument, v~!g € (K) and hence
g€ (KUV)where K = {u"'v: (u,v) € H}. Hence G is finitely generated.
Conversely, if 7, A are finite and G is finitely generated by L, say, then with
L ={(1,]):1 e L} we have thatfgenerates wé. Since L = {(pp~ ', pp~'D): p e
P,l € L}wehave L' = {(pyia, pyjb) : v e A,i € I,a,b € Q} generates a)lG where
Q={p~',p~':pe P,l e L} The result now follows from Theorem 6.1. O

Since a rectangular band is isomorphic to a Rees matrix semigroup over the trivial
group it follows that:

Corollary 6.4 Let B be a rectangular band. Then a)f3 is finitely generated if and only
if B is pseudo-finite if and only if B is finite.

Theorem 6.5 Let T = M][S; I, A; P1! be a Rees matrix semigroup over a semigroup

S, with identity adjoined. Then a)? is finitely generated if and only if the following
conditions hold:

(1) 1 is finite;

(2) thereis a finite set V C S and a finite subset Q of entries of P = (py. ;) such that
any element a of S is py-related to an element of V via the left congruence py
defined on S U ywhere

U ={(pvia, pvjb):ve i, jel abeVIU{{, pv),(pv,):pe Q,veV}
via a U-sequence of the form
a=tcy, tidy = e, ..., kdy = v,

where t; € S and (dj, cj41) # (1,1) forany 1 < j < k.

Proof Suppose that a)‘} = (X?) for some finite set X = (I’ x V x A") U {1}.
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If I is infinite, then we can pick i € I\I’ and choosing (i,a, 1) € T we have
(i,a, L) px2 1, so that there exists an Xz—sequence

(i,a, ) =z1r1, 2151 = 2212, ..., ZuSp = 1

where z,, € T and (ry,sm) € X2 forall 1 < m < n. Asi € I\I’, we have
71 €{i} x S x A, implying zo, ...,z, € {i} X § X A, but z,5, = 1 forces z,, = 1, a
contradiction.

Fix (i,a, n) € T where u € A’. We have an X 2—sequence, which we may assume
to be of minimum length (hence (dj, cj4+1) # (1,1) forany 1 < j < n)

(i,a,n) =ticy, idy = trep, ..., tydy =1,
so that #;c; # 1 for 1 < i < n. Notice that #, = 1. Suppose that 71, ..., # # 1 and
tr+1 = 1 forsome k € {1, ..., n — 1}. We therefore have a sequence
/N4 ! g3/ /N4 ! g/ /
a:tlcl,tldl :t2C2,...,tkdk:ak+l

where if #; = (g;, wy, m;) we have ¢/ = w;, and

o1 ife; =1
P2 pumar i ¢ = (b, ag, M)

and

2 {1 ifd =1
P pibr if dip = (ki by, ).

Let Q = {p,;j : v € A, j € I}. We show by induction on the length of the sequence
that for 1 <1 < kif ¢; = 1 (respectively,d; = 1),theny; € I x S x A’ and dl/ e Qv
(respectively, c; € QV).

Starting with = 1,if ¢y = 1 (sod; # 1) thent; = (i,a, n) = (g1, wi, n1) and
di = Pmkib1 = puk,b € QV.Onthe other hand, if d; = 1 (so ¢; # 1) then, noticing
that ¢ # 1 (else our sequence could be replaced by a shorter one) we have 1| = tco
so that n; € A" and ¢; = py,p,a1 € QV. Suppose for induction that 2 < m < k and
the result holds for all sequences of length strictly less than 72, and let our sequence be
of length m. Consider t,,_1d;,—1 = ty ¢, Which, by our inductive assumption, must
liein x SxA.Ifc,, =1(G0d, # 1)thent, =ty 1dy,_1 € I x S x A’ and
d, = Dk bm € QV . On the other hand, if d,, =1 (so ¢,y # 1), then ¢jy41 # 1, s0
that 7, = tyy1cmy1 € I x S x A"and ¢;, = py,h,am € QV. Thus (2) holds, with
U as defined.

Suppose for the converse that (1) and (2) hold. Let A’ be a finite subset of A chosen
suchthat Q CV = {py; : L€ A',i € I}. Let

W=(UxVxA)Ull}.
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We show that a)l} = (W?2).
Let (i,a,A) € T and pickany b € V, u € A’. Let s = ap;;b. Notice that

(I,a, )=, a, )] py2(,a, )0, b, n) =(>,s, 1.
By assumption, there is a U-sequence in S'
s =ticy, ndy =t5¢h, .. d, =v

for some v € V, where no #; = 1 and no pair (¢;, d;, ) = (1, 1). We aim to ‘lift’ this
sequence to a W2-sequence

(i,S,K) = tlcl’tldl = t2C2, "'7t)'ld)'l = (13 v, T)

in T!, for some k, v € A’. Foreach 1 <[ < n we h.ave (c;.d)) = (Pymar, Py, bo),
or (¢, d)) = (1, pyibr) or (c;, d)) = (pymar, 1). Fix uw € A’, put t; = (i, 1/, ny) for
1 <[ < n and define

1 ifc;. =1
Cj: (hjsajvnj—]) lfdj_lzl
(hj,aj,w)  otherwise

and
1 if d} =1
dj =1 (kj,bj,njt1)ifcjy =1
(kj,bj,u)  otherwise.
It is then clear that with k = ny if ¢; = 1, and k = p else, and T = n, if
d, = 1and t = u else, we have a Wz-sequence connecting (i, s, k) to (i, v, ). Since
(i,a,r) pw2 (i,s,k)and (i,v,7) € W, we are done. O

Corollary 6.6 Let B be a rectangular band. Then a)g, is finitely generated if and only
if B! is pseudo-finite if and only if B has finitely many R-classes.

Proof We need only consider the issue of pseudo-finiteness. If B has finitely many R-
classes {Ry, : 1 <i < n}, thenletting X = {1,a; : 1 <i < n},foranyb € B we have
b € R, for some i and then b = bl px2 ba; = a; px2 1, so that B is pseudo-finite. O

In the case where S is a monoid in the hypothesis of Theorem 6.5 we obtain little
simplification beyond the obvious ability to drop the condition that#; € S; the condition
on the pair (d;, cj41) is redundant, as it merely says the sequence cannot be reduced
by setting 7jc; = tj11dj 1. Where S is a group we may simplify considerably.

Suppose S has been normalised in row 1 and column 1, that is, there exists 1 € /NA
such that p;; = py; = 1 foralli e Tand . € A. Let G¥ = {p;; :i € I, € A}. By
[12],

(E(S) = MI(G"): 1. A; P). ©.1)
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Corollary 6.7 Let T = MI[G; I, A; P]1 be a normalised Rees matrix semigroup over
a group G. Then a)ZT is finitely generated if and only if the following conditions hold:

(1) 1 is finite;
(2) G = (GP U V) where V is a finite set.

Proof Suppose that wl} is finitely generated. Thus Theorem 6.5 holds and there are
finite sets V € G, Q € G, and U € G x G as in (2) of that result. Augment V by

{g~" : g € O} and, noticing that (1, gv) = (g¢~", gv) and (qv, 1) = (qv, gg~ ") we
have that

U = {(pvia, pvjb) :v e A,i,jel,a,beV}
Hence by previous remarks we have that
G = ({pviab_]p;jl cabeV,veA, i, jel)=(GPUvV),

noting that 1 € 7, and so (2) holds.
Conversely, if (1) and (2) hold then it is easy to see that a)lG has a set of generators
of the form

{(pvis poj) iv e, i, je}U{(L,v), 1, v :veV)

and hence of the form

{(puis poj)iv € Aiy j € IYUL(pakpls Peapig ), (Peapyls prkpv ™) iv € VI,

where px is chosen and fixed, and hence (by suitably augmenting V to give a finite
set W) a set of generators of the form

{(pvia, pvjb) :ve AN i, jel,a be W}

In view of earlier comments, the result now follows from Theorem 6.5. O

Recall that in [9], a semigroup is said to be of type left-FP; if the monoid S' has
this property. In light of (6.1) we may now recover Theorems 4 and 7 of [9].

Corollary 6.8 Let T = U' be a completely simple semigroup with an identity adjoined
and let G be a maximal subgroup of U. Then a)KT is finitely generated if and only if U
has finitely many R-classes and G is generated by a set (({(E(S)) NG)U V) where V
is finite. If in addition U has finitely many L-classes, then a)’; is finitely generated if
and only if U has finitely many R-classes and G is finitely generated.

Finally we consider the case when 7 = MO[S; 1, A; P).
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Proposition 6.9 Let T = MO[S; 1, A; P] be a Rees matrix semigroup with zero over
a semigroup S. Then a)ZT is finitely generated if and only if:

(1) A is finite; and

(2) (a) I is finite and there is a finite set V. C S such that for every a € S\V, we have
Sla C Spyiv for somev € A,i € I andv €V, or
(b) I is infinite and there is a finite set V. C S and a finite set I' C I such that for
every a € S, we have slag c Spyiv for somev € A,i € I' andv € V.

Proof Suppose that a)’} = (U?) for some finite set U = (I’ x V x A")U{0}. If T is finite
then (1) and (2) () trivially hold. Otherwise, we can find distinct (i, a, A), (j, b, u) ¢
U. By assumption, there exists a U2-sequence

(i,a,)) =twi, tigr = bwa, ..., thqn = (j, b, 1)

where t,, € T! and (wp,, qm) € U2 forall 1 <m < n. Notice that w; must be some
(i1, a1, A1) € U\{0}, implying A = 11 € A’, so that A = A’ is finite and (1) holds.

Suppose that I is finite. For any a ¢ V we have (i, a, X) ¢ U and then (since T
is not finite) we can begin a sequence as above, yielding #1; = (i, ¢, v) € T. We then
have that a = cp,; a1, giving Sla c Spui, v as required, and so (2)(a) holds. On the
other hand, if / is infinite then for any a € S we can find an element (i, a, A) ¢ U and
a similar argument shows that (2) () holds.

Conversely, suppose that (1), and (2)(a) or (2)(b) hold. If T is finite we are done.
Otherwise, let U = {0} U {(i,v, 1) :i € I',v € V, A € A}, where in case (2)(a) we
take I’ = I. We show that a)‘% = (U2>. To see this, let (i,a,A) € T.If (i,a, 1) e U
we are done. Otherwise, in case (2)(a), since a ¢ V we have a = xp, ;v for some
veA,jel’,veVandx € S, giving

(i’ a,)\.) = (i3x1 v)(js Uv)\)pUZ (iv-xy U)O = O

In case (2)(b) we can write any a € S asa = xp, ;v for some v € A, j € I''veV
and x € §, and achieve our aim. O

Again we may simplify the proposition above for groups.

Corollary 6.10 Let T = MO[G; I, A; P] be a Rees matrix semigroup with zero over
a group G. Then a)‘% is finitely generated if and only if either T is finite, or A is finite
and T is non-null.

Proof Recall that T is non-null if and only if the sandwich matrix has a non-zero
element. O

Remark 6.11 We end by considering again our four cases of whether or not our Rees
matrix semigroup has a zero or 1 in the context of being pseudo-finite. In cases (1) and
(3) we have a semigroup with zero, hence by Corollary 2.14, the universal relation of
our semigroup is finitely generated if and only if it is pseudo-finite. In Theorems 6.1
and 6.5 and their corollaries we merely need to impose a bound on the length of the
sequences to achieve the criterion for being pseudo-finite (so that in Corollaries 6.3
and 6.8, the group G is required to be finite).
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Open Question 6.12 Let T = M[S; I, A; P]. Fixing (i,A) € I x A we have that
Ki» = {(@i, s, A) : s € S} becomes a variant of S with sandwich element p;;. In view
of the results of this section we ask, what is the connection between a)g being finitely
generated and a)ga being finitely generated, for a variant S of S?

7 Strong semilattices of semigroups and Bruck-Reilly extensions

Strong semilattices of monoids which are of type left-FP,,, and hence of type left-FPy,
have been classified in [9, Theorem 9]. Our aim in this section is to generalise their
result, by studying strong semilattices of semigroups, with and without an identity
adjoined, and to examine the property of being pseudo-finite in this context. Using a
strong semilattice of groups we are able to give a counterexample to the conjecture
of Dales and White, mentioned in the introduction. We also examine Bruck—Reilly
extensions BR = BR(S, 6) of a monoid S to determine when ng is finitely gen-
erated. For details concerning strong semilattices of semigroups, and Bruck—Reilly
extensions, we refer the reader to [13]. Note that in the result below, even if our com-
ponent semigroups are monoids, we are not assuming that the connecting morphisms
¢q,p are monoid morphisms.

Proposition 7.1 Let S = [V; Su; @u,p] be a strong semilattice of semigroups. Then
a)g is finitely generated (S is pseudo-finite) if and only if

(1) there exists a finite subset X of S such that for every a € S we have some x € X
witha <p x;

(2) Y has a least element 0;

3) a)go is finitely generated (S is pseudo-finite).

Proof Suppose that a)g =(X 2) for some finite set X € S. Then (1) holds by Lemma
2.9. Since there is a natural epimorphism from S to ), we deduce that w’, is finitely
generated by Proposition 4.1, so that ) has a least element by Corollary 5.7. Further,
So is a morphic image of S under ¥ : § — Sp defined by sy = s¢@u.0 fors € S,.
Thus a)go is finitely generated; if S is pseudo-finite, then Sy is also pseudo-finite.
Conversely, suppose (1)-(3) hold. Then Sy forms an ideal of S, and so the result
follows from Corollary 2.13. O

Proposition7.2 Let S = [V; Su; @, p] be a strong semilattice of semigroups that is
not a monoid. Then a)él is finitely generated (S is pseudo-finite) if and only if ) has

a least element O and a)f91 is finitely generated ( Sé is pseudo-finite).
0

Proof Suppose that a)él is finitely generated (S! is pseudo-finite). Since there is a

5

! (and so Y) has a least element 0 by Corollary 5.8. For convenience denote the

identity of S! by 1g and the identity of S(l) by Ig,. Also, Sé is a morphic image of S!

under ¢ : S! — Sé defined by sy = s¢@q,0 for s € S, and 159 = lg,. Thus a)él is
0

natural epimorphism from § I'to V!, we deduce that wf,, is finitely generated, so that

finitely generated (S(% is pseudo-finite) by Proposition 4.1.
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Conversely, suppose that ) has a least element 0 and a)g, = (X?) for a finite set
0

X C S).Fixu € XNSpandletY = (XNSp)U{lg}.Ift € Sy thenast py> u in S, it
is easy to see, replacing 1s, by 1 if necessary, that z py2 u in ' viaa ¥ 2_sequence of
the same length as the original X2-sequence. For any s € S we have su € Sp, giving
s =slg py2 su py2 u py2 1g, sothat py2 = wé, . The statement on pseudo-finiteness
follows. O

Corollary 7.3 cf. [9, Corollary 3] Let S = [V; Gu; ¢u,g] be a Clifford monoid. Then
a)g is finitely generated (S is pseudo-finite) if and only if Y has a least element 0 and
G is finitely generated (finite).

Remark 7.4 We recall that a normal band is a strong semilattice of rectangular bands.
We may immediately apply Propositions 7.1 and 7.2 to this case, calling upon Corol-
laries 6.4 and 6.6. We examine bands in greater detail in Sect. 8.

Our aim now is to extend Example 5.5 by considering arbitrary Bruck—Reilly exten-
sions of monoids:

Proposition 7.5 Let S be a monoid with a)fg being finitely generated and let T =
BR(S, 0) be the Bruck—Reilly extension of S determined by 6. Then a)g is finitely
generated, but T is not pseudo-finite.

Proof Let e be the identity of S and a)g = (X?2) for a finite set X C S.Let Y =
{(1,e,0),(0,e,0), (0, x,0) : x € X}. Notice that, for any (#,a,0) € T,

(u,a,0)=(1,e,0)---(1,e,0)(1, a,0).

u—1 times

As a)g = (Xz), we have that a = ticy, hdy = by, ..., t,d, = e where t; €
S, (¢ci, d;) € X2 forall 1 <i < n. This gives

(1,a,0) = (1,11,0)(0, ¢1,0), (1,71, 0)(0, d1, 0) = (1, 12, 0)(0, 2, 0), ...
"'(lvtnso)(ovdnvo) = (1761 0)

and hence (1, a, 0) py2 (1, e, 0) py2 (0, e, 0). Notice that (1, a, 0) py2 (0, e, 0) gives
(27 a, 0) - (15 e, 0)(1a a, 0) IOY2 (1, e, O)(Ov e, 0) - (19 e, 0) pY2 (Os e, 0)
By induction we derive

(u,a,0)=(1,e,0)---(1,e,0)(1,a,0) py2 (0, ¢,0).

u—1 times

For any (u, a, v) € T where v # 0,
(uy a, v — 1) = (M, a, U)(l, e, 0) 10Y2 (M, a, U)(O, e, 0) = (M, a, U).

@ Springer



Semigroups with finitely generated universal left...

Again, a simple inductive argument yields (u, a, 0) py2 (u, a, v), so (u,a, v) py2
(0, e, 0), and hence py> = a)lT

There exists an epimorphism from 7 onto the Bicyclic monoid given by
(m, g, n)Y = (m,n), and so the final statement is immediate from Proposition 4.1
and Example 5.5. O

In the opposite direction to that in Proposition 7.5, we see that the property of w*
being finitely generated for BR(S, 6) does not necessarily transfer to S.

Example 7.6 Let G be the free group on {¢; : i € N’} and let6 : G — G be given by

aif = ajy+1. Let T = BR(G, 0) be the Bruck—Reilly extension of G determined by
6. Clearly G is not finitely generated. We claim that a)’} = (X?) for the finite set

X ={(0,e,0),(0,e, 1), (1,a0,0), (1,e,0)}.

Proof By the usual arguments, we have (i, e, j) px2 (0, e, 0),foranyi, j € NO.Noting
that (1, ap, 0) € X, we assume that (0, a;, 0) px2 (0, e, 0) for all i < n. Then

(0, a,,0)(1, ¢,0) px2 (0, an, 0)(0, e, 0) = (0, an, 0) px2 (0, ¢, 0).
Now
0, an, 0)(1,¢,0) = (1,a,0,0) = (1, ay+1, 0).
From the above we have
0, an11,0) = (0, e, D(1, an41,0) px2 (0, ¢, 1)(0,€,0) = (0, ¢, 1) px2 (0, ¢, 0),
completing our inductive step. We then have
(0,¢,0) = (0,a,",0)(0,ay, 0) py2 (0,a,", 0)
for any n € NO, and since the px2-class of (0, e, 0) is a submonoid we obtain that

0,8,0) px2(0,e,0) forall g € G.
For any u € NO, g € G we have

(u,8,0)=(1,e,00"(0, g, 0),

so that (u, g, 0) px2 (0, e, 0) and then similarly to the proof of Proposition 7.5, we
show via induction that (u, g, v) px2 (0, e, 0), forany v € NO. O

Every monoid with zero is pseudo-finite, as is every finite monoid and hence from
Proposition 4.2, every direct product of such. Dales and White [6], see also [24], posed
the question of whether the converse is true, namely, that every pseudo-finite monoid
is isomorphic to a direct product of a monoid with zero by a finite monoid. We answer
this question negatively by the following example.
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Example7.7 Let Y = {a, B} be a semilattice with 8 < « and let M = [V; Gq; o gl
be a strong semilattice of groups, where G, = G is an infinite group with identity 1 and
no elements of order 2, Gg = {a, e} is a group with identity e, and ¢y g : G4 — Gg
is defined by g@y. g = e for all g € G. Then M is a pseudo-finite monoid that is not
isomorphic to a direct product of a monoid with zero by a finite monoid.

Proof Clearly, M does not have zero, but as f is the least element of ), it follows from
Corollary 7.3 that M is pseudo-finite. Suppose that U and V are monoidsand ¢ : M —
U xV isanisomorphism. As |[E(M)| = 2and |[E(Ux V)| = |E(U)|x|E(V)]|, without
loss of generality, we assume |E(U)| = 2 and |E(V)| = 1. Let E(U) = {1y, f}
and E(V) = {ly} where 1y and 1y are the identities of U and V, respectively.
Then 1y = (1y, ly) and ey = (f, ly). Forany w = (p,q) € U x V, we have
wy ™! H 1 or wy™! H e, so that w H (1y, 1y) or w H (f, 1y), which implies
pH1ly.q H1lyorpH f,q H ly. Hence we deduce that V = Hj, is a group and
Hy x Hy, = Gg ={a,e},sothat |Hy| =1or|Hy,| =1.1f |[H,| = |V| =1, then
M=U.If|Hf| =1and |V| = |Hy,| =2, then V = {1y, b} where b* = 1y, so that
the order of (1y, b) is 2, so is the element (1, b)l//‘_l in G, but G has no elements of
order 2, a contradiction. O

8 Semigroups with a minimum ideal and completely regular
semigroups

In many of our examples of a semigroup S with a)g being finitely generated, S is
required to possess a minimum ideal / such that a)‘,Z is finitely generated. Clifford
semigroups and normal bands illustrate this point. Indeed, if § = [V; Sq; o] is a
strong semilattice of semigroups, and ) has a least element 0, then any minimum ideal
is contained in Sy, and if S is Clifford or a normal band, Sy will be the minimum ideal
exactly. In this section we give necessary and sufficient conditions for a semigroup with
a completely simple minimum ideal to have w* finitely generated. We apply our result
to completely regular semigroups and bands. We remark that we make no restriction
here on the number of right ideals of the minimum ideal, unlike [9, Theorem 8].

Theorem 8.1 Let S be a semigroup with a minimum ideal Sy that is completely simple.
Then a)fg is finitely generated if and only if the following hold:

(1) there exists a finite subset X of S such that for every a € S we have some x € X
witha <p x;

(2) if G is a maximal subgroup of So, then G = (F U V) where V is finite and
F = (E(Cyp)) N G where Cy is the union of finitely many R-classes of So;

(3) there exists an L-class L of So and a finite subset W C L such that every idempo-
tent in L is pyy2-related to an element of W via the left congruence pyy> defined
onS.

Proof We first suppose that a)fg = (U?) for a finite set U C S. Condition (1) holds by
Lemma 2.15.
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Let H be a maximal subgroup in Sp and let e be identity of H. Let h € H. As
a)g = (U?), we have

h=tcy,t1d) =, ..., thd, = e,

where #; € S' and (¢;,d;) € U?. Multiplying the above sequence by e from both
sides, we have

h = eticie, etidie = etycpe, . .., ety,d,e = e.

Now et; € So and (cje,die) € Ue x Ue € Sp x Sp. It is convenient at this point to
assume that Sy is a Rees matrix semigroup M = M[G; I, A; P] and that H = Hy;
for some distinguished 1 € I N A, where P is normalised in row 1 and column 1. We
can then write the above sequence as

h=(1,8 1 =1t,v)G,cp, D, (L, v)Grdi, 1) = (1,1, 1)@, 65, 1),
e (13 [;l’ vn)(jnad;lv 1) = (1’ f’ 1) = ea

where f is the identity of G, (1, t;, vx) € eM and ((ix, ¢}, 1), (jx, di, 1)) € Uex Ue.
We now have

/ / / ! / / / !
8 =11 Pvi €1 [ Pvy jid] = 1 Pvin €y - by Py judy =

which gives us g = d,’,_lpglljnpvnin c,’ldi’;]1 e pv_]lj1 Pwii¢y- Let I be the union of {1}
together with the rows indexed by the first co-ordinates of the elements of Ue and let
Co = M[G; I, A; P’], where P’ = (py;) is the A x I’ submatrix of P. By (6.1),
we have that H is generated by ((E(Cp)) N H) UV where V = Ue, and so (2) holds.

Note that Ue is contained in the L-class L, of Sy. If f € E(L,) then there exists
ci,di e Uandt; € S' (1 <i < n), such that

f =tic1, 1dy = tea, ..., d, = e.

Multiplying through by e on the right, and noting that fe = f we obtain (3) by
augmenting U by the finite set Ue.
Conversely, suppose (1)-(3) hold. From Corollary 6.8 we know that a)él is finitely
0

generated, say by a set U2. Let G be a maximal subgroup in L with identity e and let
F = Ue. Then F is a finite subset of Cp, and as any two elements of G are related via
a U?-sequence in Cé, a now familiar argument shows that they are related in S by an
F2-sequence of the same length.

Let Y = X UW U F U {e}. We claim w§ = (Y?). Let s € S be such that s Le,
and suppose s H f = f2. Then es He, so that es pp2 e, and so es py2 e. Hence
fespy2 fe,andso fes = fs = s py2 f = fe. However, f py2 e, so that f py2 e,
and thus s py2 e. Now take any u € S, and let t € X be such that u = at for some
aeS'. Thenu = at py2 ae py2 e as ae L e. Hence a)g = (Y?). O
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If we let the minimum ideal Sy have finitely many R-classes, then the result above
simplifies as follows. Note that this corollary can be seen as an extension of Theorem
8 of [9] from monoids to semigroups.

Corollary 8.2 Let S be a semigroup with a minimum ideal Sy that is completely simple
and has finitely many R-classes. Then a)g is finitely generated if and only if the
following hold:

(1) there exists a finite subset X of S such that for every a € S we have some x € X
witha <p x;

(2) if G is a maximal subgroup of So, then G = (F U V) where V is finite and
F =(E(Sy))NG.

To search for examples of semigroups with a minimum ideal that is completely
simple, a natural starting point is completely regular semigroups.

Corollary 8.3 Let S be a completely regular semigroup, with decomposition S =
Uaey Sy into a semilattice of completely simple semigroups Sy, @ € Y. Then a)g
is finitely generated if and only if Y has a least element 0, so that So forms a minimum
ideal that is completely simple, and conditions (1)—(3) of Theorem 8.1 hold.

Proof As J is a congruence on S, Proposition 4.1 tells us that a)é e is finitely
generated, and so Y = §/J has a least element by Corollary 5.7. Conditions (1)—(3)
and the converse is immediate from Theorem 8.1. O

For the case of bands, Conditions (1)—(3) of Theorem 8.1 reduce noticeably, since
maximal subgroups are trivial and <, has a simplified form:

Corollary 8.4 Let B be a band, with decomposition B = | J, ¢y Ba into a semilattice

of rectangular bands By, o € ). Then a)[‘B is finitely generated if and only if the
following hold:

(1) Y has a least element 0;

(2) there exists a finite subset X of B such that for every e € B we have some x € X
with ex = e;

(3) there exists an L-class L of By and a finite subset W C L such that every element
of L is py2-related to an element of W via the left congruence pyy2 defined on B.

We may use Corollary 8.2 in partnership with Corollaries 8.3 and 8.4 to specialise
to completely regular semigroups, and to bands, with minimum ideal having finitely
many R-classes.

Corollary 8.5 Let S be a completely regular semigroup, with decomposition S =
Uaey Sy into a semilattice of completely simple semigroups Sy, o € ). Suppose
also that S has a minimum ideal Sy with finitely many R-classes. Then a)g is finitely
generated if and only if

(1) there exists a finite subset X of E(S) such that for every a € S we have some
e € X withae = a;
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(2) if G is a maximal subgroup of So, then G = (F U V) where V is finite and
F =(E(Sy))NG.

If S is a band, (2) is redundant.

Our current examples of completely regular semigroups with finitely generated
universal relation include completely simple semigroups and strong semilattices of
groups or rectangular bands (possibly with identity adjoined). In each case they possess
a minimum ideal with finitely many R-classes, although we will now construct an
example which dictates that this is not a general phenomenon.

The following construction will be used in the desired example, but, as it is quite
general, it is convenient to state it separately.

Lemma 8.6 Let S be a semigroup and U a left zero semigroup with S " U = {.
Suppose that S acts on U on the left via (s,u) + s -u. Let T = S U U and define a
binary operation x on T, extending those on S and U, as follows:

S*kU=S5-U, U*XS=U

foralls € S,u € U. Then T is a semigroup having U as minimum ideal. If S is a
monoid with identity 1 and acts monoidally, then T is a monoid with identity 1.

Proof It is clear that every element of U is a left zero for the multiplication. It is easy
to check that for any s, ¢ € S and u, v € U we have

(sxt)xu=s*{*xu), (s*u)xt=s*«xw=xt)yand (s xu)*xv=-=s% (U *v)

so that the multiplication is associative. The result follows. O

In the next example, by T{,’p we mean the full transformation monoid on U with
composition right to left.

Example 8.7 There exists a left regular band monoid with finitely generated universal
relation such that the minimum ideal has infinitely many R-classes.

Proof LetU = {u; : i € N°} be aleft zero semigroup and let L = {¢; : i € N}. Define
amap L x U — U by {; -ug = up and £; - u; = u; for any i, j € N. This gives us
a map from L to 7,,°, which can be extended to a morphism from L* to 7, ,})p and we
therefore obtain an action of L* on U. Let M be the free left regular band monoid on
L. Notice that for any v, w € L* we have

vwv - u; = vw - u; foranyi € NO,

so that we also have an induced action of S on U givenby w - u; = w - u j, where w
denotes the natural image of w € L* in S.

Let T = S U U be made into a monoid under * as in Lemma 8.6. We claim that
a)? = (X2) where X = {1, ug, u1}. To see this we use Corollary 8.4, noting that
conditions (1) and (2) are clear by construction. Let W = {ug, u1}, and take any
u; € U\W. Then u; = l;uy py2 lijup = ug, and so Condition (3) holds, thus proving
the claim. O
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In the case where H is a congruence on a completely regular semigroup S, we
may take a different approach to Corollary 8.3. Our aim is to determine the relevant
property of the completely simple semigroup in terms of the band S/H and a maximal
subgroup of the minimum ideal of S.

Theorem 8.8 Let S be a completely regular semigroup and suppose that H is a con-
gruence on S. Let S = Uaey Sy be the decomposition of S into a semilattice of

completely simple semigroups Sy, o € Y. Then a)g is finitely generated if and only if
the following hold:

(1) the universal relation on S/'H is finitely generated;

(2) if G is a maximal subgroup of So, where 0 is the least element of ) (the existence
of 0 follows from (1)), then G = (F U V) where V is finite and F = (E(Cy)) NG
where Cy is the union of finitely many R-classes of So.

Proof We first suppose that a)fg = (U?) for a finite set U C S. As H is a congruences
on S, Proposition 4.1 tells us that the universal relation on the quotient S/H is also
finitely generated. Condition (2) follows from Corollary 8.3.

Conversely, suppose that (1) and (2) hold. Let E be a finite subset of E(S) such that
the universal relation on S/ is finitely generated by [E] x [E] where [E] = {H/ :
f € E}. As in the proof of Theorem 8.1 we may assume that G is an H-class of Sy
and there exists a finite subset W in S such that for any g, 7 € G we have g py2 h.

Let X = EUWU({e} U Ee, where e is the identity of G. We claim that a)g = (X?).
Leta € S. Then [a] <, [f] for some f € E andsoa <, f.Now

a=af pxy2ae=bLe
and eb € G, sothateb py2 e. If g = g2 H b, then b pw2 ge = g and as py2 C py2,
so b py2 g. It remains to show that g py2 e.
As [g] prep Lel, there exists a sequence
[g] = [n1llei], [n]ldi] = [2]le2], - . ., [ta]ldn] = [e].
for [t;] € (S/H)" and ([¢;], [d;]) € [E]>, 1 <i < n. Now
g Hticy, tidy H taca, ..., thd, He.
Multiplying by e on the right we have

g Htn(cre), ti(die) H ta(cze) ..., ty(dne) He.

Now suppose p, g € L, where p H q H r = r>. Thenep H eq H e and so ep py2 eq.
This implies rep py2 req and hence p py2 g. Thus

g pwe ti(cre) px2 ti(die) py2 ta(cae) ... py2 e,

and so g py2 e and a){; = (X?), as required. m|
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Remark 8.9 All the results in this section may be easily adapted to the pseudo-finite
case. For example, in Theorem 8.1 the pseudo-finiteness of S guarantees that the
lengths of the (F U V)2-sequences and of the Wz—sequences in (2) and (3) respectively
may be bounded, with the converse also clearly holding.

Open Question 8.10 Every pseudo-finite semigroup considered in this article has the
property that it contains an ideal which is completely simple. The contrast to the weaker
case where o' is finitely generated is highlighted by Theorem 5.1 and Proposition 5.3.
In view of this we ask whether all pseudo-finite semigroups have this property? By the
work of Sect. 8, a positive answer to this question would give a complete description
of all pseudo-finite semigroups.
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