Jennings, D orcid.org/0000-0003-1201-3725, Dragan, A, Barrett, SD et al. (2 more authors) (2009) Quantum computation via measurements on the low-temperature state of a many-body system. Physical Review A, 80 (3). 032328. ISSN 1050-2947
Abstract
We consider measurement-based quantum computation using the state of a spin-lattice system in equilibrium with a thermal bath and free to evolve under its own Hamiltonian. Any single qubit measurements disturb the system from equilibrium and, with adaptive measurements performed at a finite rate, the resulting dynamics reduces the fidelity of the computation. We show that it is possible to describe the loss in fidelity by a single quantum operation on the encoded quantum state that is independent of the measurement history. To achieve this simple description, we choose a particular form of spin-boson coupling to describe the interaction with the environment, and perform measurements periodically at a natural rate determined by the energy gap of the system. We found that an optimal cooling exists, which is a trade-off between keeping the system cool enough that the resource state remains close to the ground state, but also isolated enough that the cooling does not strongly interfere with the dynamics of the computation. For a sufficiently low temperature we obtain a fault-tolerant threshold for the couplings to the environment.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2009 The American Physical Society. Reproduced in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Theoretical Physics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 22 Aug 2019 14:03 |
Last Modified: | 22 Aug 2019 14:03 |
Status: | Published |
Publisher: | American Physical Society |
Identification Number: | 10.1103/PhysRevA.80.032328 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:139416 |