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We consider measurement-based quantum computation using the state of a spin-lattice system in equilibrium

with a thermal bath and free to evolve under its own Hamiltonian. Any single qubit measurements disturb the

system from equilibrium and, with adaptive measurements performed at a finite rate, the resulting dynamics

reduces the fidelity of the computation. We show that it is possible to describe the loss in fidelity by a single

quantum operation on the encoded quantum state that is independent of the measurement history. To achieve

this simple description, we choose a particular form of spin-boson coupling to describe the interaction with the

environment, and perform measurements periodically at a natural rate determined by the energy gap of the

system. We found that an optimal cooling exists, which is a trade-off between keeping the system cool enough

that the resource state remains close to the ground state, but also isolated enough that the cooling does not

strongly interfere with the dynamics of the computation. For a sufficiently low temperature we obtain a

fault-tolerant threshold for the couplings to the environment.

DOI: 10.1103/PhysRevA.80.032328 PACS number�s�: 03.67.Lx

I. INTRODUCTION

The “one-way” model for quantum computation, which

requires only local adaptive measurements of individual qu-

bits prepared in a fixed multiqubit resource state, provides an

approach for assessing the physical requirements for univer-

sal quantum computing. The cluster state on a two-

dimensional �2D� square lattice is the canonical example of a

resource state that allows for universal measurement-based

quantum computation �MBQC� �1,2�. Much research on

MBQC focuses on properties of the resource state itself, and

in particular how such a state could be prepared dynamically

via, say, local controlled-Z operations in a variety of systems

for which the dynamics of the individual qubits can be un-

coupled, such as an optical lattice �3� or single photons �4,5�.
In contrast, recent new theoretical results in MBQC have

been obtained by viewing the resource state as the ground or

low-temperature thermal state of a strongly coupled quantum

many-body system �6–11�. This perspective allows us to use

some powerful tools and techniques of quantum many-body

theory, for example, to determine what type of systems per-

mit universal MBQC �12–14� and for those that do, how

robust the system is in its universality �6,8,9,11�.
One could take this perspective of ground states serving

as computational resources as a physical realization, and

thus, obtain a mechanism for creating cluster states or other

such resource states. That is, if a quantum many-body system

could be engineered such that it possesses the cluster state as

its unique ground state �7�, and if the system is sufficiently

gapped then MBQC can be performed by cooling the system

down to a sufficiently low temperature and then performing a

sequence of adaptive measurements on this thermal state.

However, by treating the resource state for MBQC as the

equilibrium state of a dynamical system, any measurements

that we perform will necessarily disturb it from its thermal

state. As measurements must be adaptive, if they are sepa-
rated by finite time intervals we are faced with both errors
produced by the evolution under the system’s Hamiltonian
and also the cooling interaction with the environment. These
two sources of dynamical error, together with thermal errors,
act to reduce the output fidelity of any MBQC scheme that
we might wish to perform.

In this paper, we investigate a regular lattice of qubits, for
which the free Hamiltonian has the cluster state as its ground
state. The system is first prepared by cooling via a simple
and convenient choice of coupling to a bosonic bath in a
thermal state, and we assume that the coupling to the bath is
present throughout the computation. This situation is relevant
to an experiment, in which a strongly coupled system is first
prepared in a useful initial resource state using a refrigerator,
and which cannot easily be subsequently decoupled from the
refrigerator before the MBQC commences. Alternatively, in
the context of a laser-cooled atomic system, it may be incon-
venient or undesirable to turn off the cooling interaction be-
fore the MBQC commences.

We explicitly determine how MBQC proceeds on this sys-
tem’s thermal state as it is perturbed by measurements, with
free evolution and cooling interaction ongoing between mea-

surements. In particular, for the lattice of spins in the pres-

ence of a spin-boson coupling to a thermal bath that acts to

restore the system to the pure cluster state, we show that the

free Hamiltonian for the spin lattice state induces coherent

oscillations that determine a natural measurement rate. Im-

portantly, the effect of the bath may be conveniently de-

scribed by a single quantum operation that acts on the en-

coded quantum information within the MBQC computation

and which is independent of the particular measurement his-

tory. With this result we demonstrate that MBQC on such a

dynamical thermal state is fault tolerant for a sufficiently low

temperatures and for couplings to the bath below a given

threshold.
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II. MBQC WITH DYNAMICS

The cluster state on a lattice L of N qubits may be defined

in the stabilizer formalism �15� as the unique eigenstate of

each of the mutually commuting stabilizers Ki=Xi� j�iZ j

with eigenvalue one �2�. Here, i labels a particular site in the

lattice and j� i signifies that j is a neighboring site of i. The

stabilizer description allows us to define the cluster state as

the ground state of the Hamiltonian

Hc = −
�

2
�
i�L

Ki, �1�

with an energy gap �. A state in the kth excited level of this

Hamiltonian is obtained by performing Z errors at k distinct

sites, and implies that the energy level is � N

k �-fold degenerate.

A useful alternative description of the cluster state, which

we shall make use of shortly, is in terms of the action of

entangling unitaries between neighboring qubits on the lat-

tice. The qubits at all sites are first initialized in the state

�+�, i.e., stabilized by the set of operators Xi, and then for

every bond in the lattice the controlled-Z unitary

exp�i��1�	1� � �1�	1�� is performed between the two end qu-

bits. We denote the product of all controlled-Z operations on

each bond simply as U, and the link between the two de-

scriptions is provided by the relation UKiU
†=Xi.

MBQC on the ground state of a spin-lattice model gov-

erned by this Hamiltonian involves an adaptive measurement

procedure, in which qubits are measured sequentially in dif-

ferent bases until the desired output state is produced, up to

Pauli operator corrections, on the remaining unmeasured qu-

bits. The Z measurements play a special role and are used to

remove individual qubits from the cluster state, while se-

quences of single qubit measurements in the X-Y plane are

used to implement unitary gates on the encoded quantum

information. For the perfect cluster state, the inputs can be

taken, without loss of generality, to be �+� on each of the

qubits to be measured first.

A. Measurements and free evolution of the lattice

As some of these measurements are adaptive �i.e., the

choice of measurement bases are conditional on prior mea-

surement outcomes� they must necessarily be performed at

different times. Measurements disturb the system out of its

ground state, and between measurements this disturbed state

will evolve under the Hamiltonian �1�. An important property

of this Hamiltonian is that it is dispersionless, and so any

localized excitations will remain local and will not propagate

across the lattice. For example, if a Z measurement is per-

formed at site s the system is projected into an equal super-

position of the ground-state U�� i�+�i� and the state with a

single Z error on site s, U�� i�s�+�i � �−�s�. In the case of a

single X measurement at the site s, the system is projected

into a superposition of the ground-state U�� i�+�i� and the

state with Z errors on all of the neighboring sites of s,

U�� i
s�+�i� i�s�−�i�. This local disturbance remains local un-

der evolution; however, because the postmeasurement state

is no longer an energy eigenstate, this evolution must be

accounted for when we perform subsequent measurements

on neighboring qubits.

If all of the measurements on the system can be per-

formed on a time scale much less than that of the system’s

evolution, one may be able to treat the effect of short-time

evolution as a small perturbation of the cluster state. How-

ever, one could alternatively make use of a natural time scale

of this system. The equal-spaced spectrum of the Hamil-

tonian �1�, with spacing �, ensures that evolution is periodic

with period �=2� /�. If �instantaneous� measurements are

made at time intervals which are multiples of this period, the

evolution of the system under the Hamiltonian can be ig-

nored. In essence, the energy gap � of the Hamiltonian pro-

vides a natural “clock speed” for the quantum computation.

Given that the gap in the system will determine the tempera-

ture to which the lattice must be cooled in order to approach

the ground state, it will be desirable to engineer systems in

which this gap is as large as possible; with this in mind,

performing very fast measurements �i.e., at a frequency���
may not be possible, and performing measurements at this

clock speed �or integer fractions thereof� is a much less strin-

gent requirement.

B. Spin-boson model

The quantum many-body system with Hamiltonian �1� is

gapped, and so we can prepare a cluster state �or a close

approximation to it� by cooling the system down to near its

ground state though coupling to a thermal bath. �This cooling

can be done efficiently because of the simplicity of the

Hamiltonian �16�.� Performing measurements on the ground

state yields excited states that are no longer in equilibrium

with the bath and so, if the cooling interaction is present, any

measurement scheme that we may perform on the cluster

state must proceed sufficiently quickly to avoid a return to

equilibrium. However, we have already argued that the free

Hamiltonian Hc will require measurements to be close to the

intervals 2� /�, and this clock speed provides a lower bound

on the overall duration of the computation. We now consider

the effect of a finite measurement rate in the presence of such

cooling.

To model the effects of cooling, we consider a system

consisting of a bath of bosons held at a low temperature and

coupled to each site qubit via a spin-boson interaction, which

takes the form HI=�i,j�ijZiqij. Here, qij =aij +aij
† is the dis-

placement operator for the jth mode at site i and �ij are cou-

pling constants. The full Hamiltonian for the system of qu-

bits and bosons is then

Htot = Hc + HI + Hb, �2�

where Hb=�ij�ijaij
† aij is the free Hamiltonian for the bath.

We note that our results depend on this choice of Z axis to

describe the coupling to the bath. In practice we may not

have full control over this coupling, but in many systems

�e.g., in trapped atoms�, to a good approximation the envi-

ronment couples only to a single spin component of the qubit

degree of freedom. In such a situation, one may take the

coupling to the bath as defining the Z axis. This assumes we

have full control over the cluster Hamiltonian, and so may

adjust it so as to coincide the Z axis for the cluster state with

the axis defined by the cooling interaction. We leave as open
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the question of how MBQC can proceed with a more general

coupling.

Because the interaction Hamiltonian commutes with the

set of controlled-Z unitaries applied to every neighboring

pair of qubits, we can map this system using the unitary U to

a dual system of uncoupled qubits, with the same interaction

HI to the thermal bath. We shall consider the master equation

for this dual system with total Hamiltonian

H̄tot � UHtotU
† = −

�

2
�

i

Xi + HI + Hb. �3�

In general, we denote operators in the dual model with a

overline bar. For example, single-qubit measurements on the

original system, given by projectors Pk, are now described in

this dual model by multiqubit projectors Pk=UPkU
†.

A standard derivation results in a master equation �17�. for

the lattice subsystem given by

�̇̄�t� = �
i

�i
�

2
�Xi, �̄�t�� + �iD��+ � i 	 − ���̄�t�

+ 	iD��− � i 	 + ���̄�t�
 , �4�

where the action of the superoperator D�A� on the state �̄ is

given by D�A��̄=A�̄A†−
1

2
�A†A , �̄�. The constants �i and 	i

are parameters that depend on the couplings to the bath, �ij,

and the temperature of the bath, T. They are given explicitly

as

�i = 2��
j

�ij
2 
��ij − ���1 + n����

	i = 2��
j

�ij
2 
��ij − ��n���

n�E� = �eE/kT − 1�−1. �5�

We make the simplifying assumption that the couplings �
and 	 do not vary from site to site and for later reference we

may relate the temperature of the bath to the coupling pa-

rameters through the equation

kT = �/�ln��/	�� . �6�

Within the dual picture, a qubit initially in the state �̄0 will

evolve in time t under a completely positive �CP� map Et to

the state �̄t=Et��̄0�. A Kraus decomposition for this CP map

E��̄�=�iMi,t�̄Mi,t
† , is given by

M1,t =� �

� + 	
�e−i�t�+ �	+ � + e−��+	�t/2�− �	− ��

M2,t =� 	

� + 	
�e+i�t�− �	− � + e−��+	�t/2�+ �	+ ��

M3,t = ���1 − e−��+	�t�/�� + 	��+ �	− �

M4,t = �	�1 − e−��+	�t�/�� + 	��− �	+ � . �7�

This evolution takes any single-qubit state �̄ asymptotically

in time toward an equilibrium state

�̄e =
�

� + 	
�+ �	+ � +

	

� + 	
�− �	− �

=
1

1 + e−�/kT
�+ �	+ � +

e−�/kT

1 + e−�/kT
�− �	− � . �8�

Thermal equilibrium for the full lattice is reached with a rate

governed by the couplings � and 	.

C. Example: Arbitrary X-rotation

To illustrate the effect of dynamics on MBQC we con-

sider performing a simple single-qubit gate using MBQC on

a one-dimensional lattice. More general gates will behave

similarly, as we shall show in Sec. III.

Consider performing an arbitrary X-rotation gate, i.e., a

rotation X���=exp�−i
�

2X� of a single qubit about the X axis

by angle �. The smallest cluster state that can realize such a

gate is the three-qubit cluster state on a line. The ideal gate

proceeds as follows for a nondynamical cluster state. The

qubits are initially prepared in the state ��in�1 � �+�2 � �+�3.

The state is then entangled with the unitary U. Qubit 1 is

measured in the basis ��+� , �−��, with measurement result s1

� �0,1�. Based on this measurement result, qubit 2 is mea-

sured in the basis �exp�−i


2 Z��+� , exp�−i



2 Z��−��, where 


= �−1�s1�, with measurement result s2. For the static case it is

simple to show that, subsequent to these measurements, qu-

bit 3 is left in the state exp�−i


2 X3�Z3

s1X3
s2���3

=Z3
s1X3

s2 exp�−i
�

2X3����3. That is, the initial state ��� has been

rotated by the gate exp�−i
�

2X� up to Pauli operator correc-

tions Z3
s1X3

s2.

For a dynamical three-qubit cluster state that evolves ac-

cording to the Hamiltonian �2�, the timing of the two projec-

tive measurements becomes important for the gate to suc-

ceed with high fidelity. First, if the initial state is left to

interact with the bath, the system would eventually evolve to

the equilibrium state and the input state �̄in= ��in�	�in� would

be erased. For temperature T�0 we assume that the initial

state is U��̄in � �̄e
�2�U†, where �̄e is given by Eq. �8�, and that

the system evolves for a time t0 until the projective measure-

ment P1 on qubit 1; the measured state then evolves until

time t0+ t at which point the second measurement P2 is per-

formed. The output state is thus given by

� = UP̄2Et�P̄1Et0
��̄in � �̄e

�2�P̄1
†�P̄2

†U†, �9�

where we described the evolution in our dual model, related

to our system by the unitary operation U, with evolution Eti

at time ti obtained from �4�, and Pk=UPkU
†.

The evolution up to time t0 is given by

Et0
:�̄in � �̄e

�2
� Et0

��̄in� � �̄e
�2. �10�

For convenience, we define �̄t0
=Et0

��̄in�, which can be ex-

pressed in Bloch vector form as �̄t0
=

1

2
�I+r�t0

·�� � with r�t0

= �xt0
,yt0

,zt0
�.
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The second stage of the evolution is different due to the

projective measurement on the first qubit. A direct calcula-

tion of �9� followed by tracing out qubits 1 and 2 yields the

final state of qubit 3

�̄3�t0,t� = Z3
s1X3

s2e−i�/2X3�̄oute
i�/2X3X3

s2Z3
s1, �11�

where �̄out=
1

2
�I+r�out�t0 , t� ·�� � and

r�out�t0,t� = �xout,yout,zout�

xout = xt0
e−1/2��+	�t cos �t

yout = �yt0
cos �t − zt0

sin �t�e−��+	�t cos �t

zout = �zt0
cos �t + yt0

sin �t�e−3/2��+	�t. �12�

The decoherence due to the evolution under the coupling to

the bath does not depend on the particular choice of unitary

that we perform, and furthermore the fidelity, being unitarily

invariant, depends only on r�out. For the situation of a perfect

cluster state �T=0� with t0=0 and �̄in= �+�	+� we have

F��̄in, �̄out� =
1

2
�1 + e−1/2�t cos �t� , �13�

which is plotted in Fig. 1. For a fixed �, the local maxima for

fidelity occur slightly before the times given by multiples of

�=2� /�, due to the presence of the exponential factor, how-

ever we note that the analysis derived from the master Eq.

�4� will only be valid for weak bath couplings ���.
We see that to obtain high fidelity, we perform the mea-

surements at times given by multiples of �. In the large t
limit the output state decoheres to the maximally mixed state
1

2
I, which reflects a return to the pure cluster state. We also

note that the evolution of the encoded quantum information
between time 0 and time t0 is distinct from the evolution
between t0 and t0+ t and we will show that, in general, the
latter form of evolution is the typical way in which fidelity is
lost. For comparing results here with those obtained in the
general decoherence situation, we note that the measurement
on qubit 1 produces a Hadamard transformation of the en-
coded state, and consequently swaps the x and z components
of the Bloch vector.

D. Optimal cooling rate

In any experimental realization of MBQC on a strongly
coupled system, there will be a residual thermal coupling to
an ambient background �the environment�, at temperature
Tbg. Typically, this environment is warm compared to the
relevant energy scale in the system, i.e., kTbg��. The cou-
pling to this background can be reduced, for example by
screening the system from thermal noise, but usually it can-
not be eliminated altogether. The purpose of the cooling bath
�at temperature Tbath� is to counteract this residual heating
effect, by actively cooling the system such that the lattice of
spins is prepared in a highly entangled cluster state at an
effective temperature kT�� ,kTbg. However, as described in
the previous section, the coupling to this bath also has an
unwanted effect, which is to reduce the fidelity of MBQC on
the system, by disrupting the state of the system over the
course of the computation. A reasonable question to ask,
then, is how the fidelity of a calculation varies as the strength
of the coupling to the cooling bath is varied.

The effects of a cooling bath plus high-temperature back-

ground may be modeled by including separate Lindblad

terms for each of the baths in the master equation:

�̇̄�t� = �
i

i
�

2
�Xi, �̄�t�� + �

i

��bathD��+ �i	− ���̄�t�

+ 	bathD��− �i	+ ���̄�t�� + �
i

��bgD��+ �i	− ���̄�t�

+ 	bgD��− �i	+ ���̄�t�� , �14�

where �bath and 	bath describe the coupling to the cooling

bath at temperature Tbath, and �bg and 	bg are the correspond-

ing coupling strengths to the background environment at

temperature Tbg. For simplicity, we assume that the back-

ground is very warm compared to the energy gap in the

system, kTbg��, and use �6� to deduce that �bath=	bath��,

and also that the cooling bath is at a very low temperature

kTbath��, such that 	bath=0. In this limit, the master equa-

tion becomes

�̇̄�t� = �
i

i
�

2
�Xi, �̄�t�� + �

i

�bathD��+ �i	− ���̄�t�

+ ��
i

�D��+ �i	− ���̄�t� + D��− �i	+ ���̄�t�� . �15�

�Note that the effect of a nonzero temperature cooling bath

FIG. 1. Contour plot of fidelity as a function of coupling �, to a

zero temperature bath and measurement time t. We set �=1 and

show ten equally spaced contours between F=0 ��=0, t=�� and

F=1 ��=0, t=2�n�. Each shaded band corresponds to an interval

of 10%, for example, the white regions correspond to a fidelity of

90�F�100%, centered around multiples of �, the uppermost large

gray region corresponds to 40�F�50% while the black regions

correspond to 0�F�10%.
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can also be described by this master equation by a suitable

redefinition of �bath, 	bath, and ��.
To understand the effect of cooling on the fidelity of a

computation, we consider the three qubit example of Sec.

II C, using the master Eq. �15�. We assume that the system is

initially in equilibrium under �15� and that the measurements

are performed on qubits 1 and 2 at times t=0 and t=2� /�.

Between the measurements the system evolves according to

the master Eq. �15�, after which we calculate the fidelity

between the actual output state on qubit 3 and the ideal out-

put state. The behavior of the fidelity as a function of the

coupling �bath, for various values of �, is shown in Fig. 2.

From Fig. 2 it can be seen that, for large �bath, there is a

high loss in fidelity due to rapid dynamics in between the

measurement steps, that try to bring the system back to equi-

librium. At the other extreme, for a weak coupling to the

cooling bath �bath→0, the initial state of the system is highly

mixed, due to the coupling to the warm background, and so

the fidelity is also reduced. There is consequently a trade off

in terms of cooling strength, between counteracting the heat-

ing effects of the background and reducing errors due to

dynamics between measurements for MBQC on the system.

Thus, given any ambient background there is an optimal cou-

pling of the system to the cooling bath. Provided the cou-

pling to this cooling bath is under the control of the experi-

mentalist, the optimal coupling should be selected in order to

maximize the fidelity of computations.

Note that the two Lindblad terms in �15� can be absorbed

into a single term, such that the effect of the two baths is the

same as coupling to a single bath with �=�bath+� and 	
=�, so that using �6�, the effective temperature of the bath is

given by kT=� / log�1+�bath /��. In the subsequent sections

we treat the system as if it were coupled to a single bath

parameterized by � and 	.

III. GENERAL DECOHERENCE IN MBQC

For our simple X-rotation gate on a 3 qubit state, we

found that the loss in fidelity of the encoded qubit takes on a

particularly simple form. In this section, we generalize this

result for an arbitrary sequence of measurements in a MBQC

scheme, performed at the multiples of the natural time scale

�. Within a general MBQC scheme on a d-dimensional lat-

tice, one dimension is identified as “time” and a

�d−1�-dimensional logical state evolves through the lattice

via measurements �Fig. 3�. We show that the decoherence of

this logical state as MBQC proceeds along the time direction

coupled via HI to a bath at a given temperature is described

by a single quantum operation, acting on the logical state,

producing anisotropic decoherence toward the maximally

mixed state. The importance of this result is that the error

model for the logical qubit is Markovian when we restrict to

measurements at multiples of � on the cluster state. This

error model in turn allows for the application of standard

fault-tolerant thresholds.

A. One-dimensional lattice

We begin by considering single-qubit unitaries through

MBQC on one-dimensional lattices, and will consider the

general case in the next section. On a line, with qubits la-

beled sequentially left to right, consider the situation of al-

ready having performed N−1 projective measurements after

a time �N−1��, where �=2� /� is the natural measurement

time. Consequently, the qubit at site N−1 is in a pure state,

while the qubits i�N−1 are partially entangled having

evolved back toward the cluster state under the full Hamil-

tonian for the spin-lattice system coupled to the thermal bath.

The qubits i�N−1 are in an entangled state and are still

awaiting measurement.

We map the qubits N ,N+1,N+2,¯ to a system of unen-

tangled qubits by applying the unitary

VN = �
i�N

Ui−1,i, �16�

where Ui−1,i is the controlled-Z unitary between qubit i−1

and qubit i. This map transforms the Hamiltonian Htot
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FIG. 2. Fidelity as a function of the cooling constant �bath for

couplings to the background �from the bottom to the top� �

=10−2 ,10−3 ,10−4 , and 10−5,. For each there is an optimal cooling

rate that maximizes the fidelity.

FIG. 3. �Color online� Schematic diagram for the localization of

the logical state to the qubits QN after N−1 timesteps. The qubits to

the right of QN are disentangled with a unitary VN, while those to

the left have already been measured. The qubits QN−1 are in a pure

product state, having just been measured.
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→Htot� =VNHtotVN
† such that qubits i�N−1 are uncoupled,

and more importantly localizes the logical state to qubit N,

The dynamics of the original state is determined by mapping

under VN, evolving under Htot� and then mapping back with

VN
† . However, because the qubits at sites i�N are assumed to

be in equilibrium, they are static under the dynamics and

may be ignored, and so we only have to consider the dynam-

ics of the measured qubits together with the logical state at

qubit N. The logical state, localized at site N, decoheres dur-

ing the time interval �N−1�� to N� under H�, where the qubit

interacts with site N−1 through the cluster Hamiltonian term

−
�

2
ZN−1XN, and with the bath through the � j�NjZNqNj.

The state of the measured qubits and qubit N evolves

according to the map E�
tot���=�IWI,��WI,�

† , where the Kraus

operators WI for the entire system can be expressed in terms

of the Kraus operators Mi of Eq. �7� as

WI=�i1,. . .,iN�,� = U�Mi1,� � Mi2,� � ¯ � MiN,��U
† �17�

and where U is the product of all the controlled-Z unitaries

for bonds to the left of site N.

The evolution has the effect of partially entangling the

logical state at N with the other qubits. The input state for the

Nth projective measurement is then

Tr1,. . .,N−1�E�
tot���� =

1

2
�I + r�N� · �� � , �18�

and we obtain the components of its Bloch vector r�N� via

r�N�=Tr���E�
tot����. Consequently, we can determine the equa-

tions of motion for this vector as a function of time from the

master equation.

For simplicity, we go to the interaction picture, with

�I�t�=exp�−iHct���t�exp�iHct� and obtain the equations

�t	XN�t��I = �� − 	�	ZN−1�t��I −
3

2
�� + 	�	XN�t��I

�t	YN�t��I = − �� + 	�	YN�t��I

�t	ZN�t��I = −
1

2
�� + 	�	ZN�t��I, �19�

where 	A�t��I=Tr��I�t�A� for any observable A and � and 	
the temperature-dependent coupling parameters as in �4�.
The equation for the Z component holds for any site s and so

	Zs�t��I=zs exp�− 1

2
��+	�t�. Now all computational measure-

ments in MBQC on the cluster take place in the X-Y plane,

and so 	Zs�t��=0 for all s�N and for all time t after site s

has been measured.

The components of the logical state in the interaction pic-

ture then evolve as

	XN�t��I = xN exp�−
3

2
�� + 	�t� ,

	YN�t��I = yN exp�− �� + 	�t� ,

	ZN�t��I = zN exp�−
1

2
�� + 	�t� . �20�

However, at times t=n�, we have �I�t�=��t�, and so for these

times the decoherence to the maximally mixed state is de-

duced from the interaction picture results, and agrees with

the explicit example of the 3 qubit system in Sec. II C.

The result of this analysis is that the MBQC scheme along

the line of qubits with a free Hamiltonian and in contact with

a bath at a finite temperature can be described in simple

terms for any sequence of measurements on the logical state

at times, which are multiples of �, using a fixed Markovian

noise operator F. For a sequence of measurements

��1 ,�2 , . . .�N� in the X-Y plane labeled at each site by an

angle � from the X axis and with outcomes �s1 ,s2 , . . . ,sN�,
the single-qubit logical state is processed as

�in → �Zs1X��1�H���in� → F��Zs1X��1�H���in��

→ �Zs2X��2�H��F��Zs1X��1�H���in��� → F��Zs2X��2�H�

��F��Zs1X��1�H���in���� → ¯ , �21�

where for any A we denote �A����=A�A†, H= �+�	0�+ �−�	1�,
X���=exp�−i

�

2 X�, and F��� is the quantum operation given

by

F��� = p1� + p2X�X + p3Y�Y + p4Z�Z , �22�

with

p1 =
1

4
�1 + w��1 + w2� p2 =

1

4
�1 − w��1 − w2�

p3 =
1

4
�1 − w��1 + w2� p4 =

1

4
�1 + w��1 − w2� �23�

and w=exp�−��+	�t /2�.
It is also clear from this analysis why in the case of an

arbitrary X rotation performed with three qubits, that the first

evolution is slightly different from the second one: before the

first measurement there are no qubits to the left of the first

site to affect the logical state, while the qubits to the right are

already in their equilibrium state, and so the evolution of the

state is localized to the first site.

B. General lattices

The analysis of the last section can be extended to higher-

dimensional lattices. For example, if upon localization to a

site s using an analogous unitary to VN, the single-qubit logi-

cal state has k neighboring sites, labeled 1 ,2 ,3 , . . . ,k, then

�19� generalizes to
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�t	Xs�t��I = �� − 	�	Z1 ¯ Zk�t��I −
k + 2

2
�� + 	�	Xs�t��I

�t	Ys�t��I = −
k + 1

2
�� + 	�	Ys�t��I

�t	Zs�t��I = −
1

2
�� + 	�	Zs�t��I

�t	Z1 ¯ Zk�t��I = −
k

2
�� + 	�	Z1 ¯ Zk�t��I. �24�

For general MBQC on for example the 2D or three-

dimensional �3D� lattice, we assume that the adaptive mea-

surements are performed in steps, with a time interval � be-

fore the next round of measurements. Each round of

measurements is composed of a set of Z measurements to

eliminate qubits from the lattice and a set of measurements

in the X-Y plane to propagate correlations and to perform the

desired computational transformations.

After N−1 such measurement steps, we may formally dis-

entangle the qubits to be measured at steps N ,N+1,N

+2, . . . and transform to a system where the logical state is

localized to a set of qubits, which we denote QN �Fig. 3�.
Once again, the qubits to measured at stages N+1,N+2, . . .

are in their equilibrium states and can be ignored for the

timestep. The reduced state for the logical state after a time �
is determined from terms of the form 	M�I, where M is a

product of Pauli operators on QN and its surrounding qubits.

A site i on the lattice contributes to the equation of motion

of a general observable M according to the following rule: it

contributes −
��+	�

2
	M�I if either �M ,Zi�= �M ,Ki�=0 or if

�M ,Zi�= �M ,Ki�=0; it contributes −��+	�	M�I+ ��
−	�	MKi�I if �M ,Zi�= �M ,Ki�=0; and zero otherwise. Con-

sequently, awkward terms can arise when M contains an X

observable. These terms couple the equations of motion for

observables on QN with observables on QN plus its neigh-

bors, however for MBQC on the cluster state these equations

decouple, from the following argument.

For an observable M on QN containing m Xi observables,

its equation of motion will only have terms of the form 	M�I

and 	MKi�I. However MKi is an observable with �m−1� X’s

on QN and a number of Z’s in QN−1, the set of qubits that

have just been measured. If we iterate and obtain the full set

of coupled equations that determine 	MKi�I we arrive at a

dependence on observables without any X observables and

with at least one Zs on site s in QN−1. The equation of motion

for such an observable M� is of the form �t	M��I

=−p��+	� /2	M��I for some integer p. Furthermore, if s was

measured in the X-Y plane then initially 	M��I=0 and so will

remain zero for the whole time interval. Retracing the chain

of coupled equations we find that each problematic term of

the form 	MKi�I vanishes for t�0 and the equations of mo-

tion for the observables on QN are decoupled provided each

qubit in QN has at least one neighbor in QN−1 that was mea-

sured in the X-Y plane.

The expectation of an observable M on QN will evolve as

	M�I=M0e−q��+	�t/2 for some integer q, and for Pauli observ-

ables M1 ,M2 . . . ,Mk on sites 1 ,2 , . . . ,k we have that

�	M1¯Mk�t��I�� �	M1�t��I�¯ �	Mk�t��I�, with equality com-

ing when the sites do not share any neighbors �18�.

C. Fault tolerance

With a simple Markovian description of the errors present

in our scheme, we can consider fault-tolerant MBQC. There

are two sources of errors in the dynamical setting that we are

considering. First, the equilibrium state for the system is at a

nonzero temperature, and so there are preparation errors due

to an imperfectly prepared cluster state. Second, errors occur

due to the dynamics between measurements, and can be

viewed as storage errors on the qubits for a given timestep.

For sufficiently low rates, MBQC on a 3D lattice has been

shown to be fault-tolerant for both of these sources of errors

�19,20�. If the state distillation protocol of Ref. �20� is used,

the error threshold is set by the bulk topological part of the

error correction scheme, which in turn can be related to a

phase transition in the classical random-plaquette gauge

model �21�.
Our initial state is a thermal state, static under the

dynamics, prepared by cooling with the bath. Such a thermal

cluster state at a temperature T is obtained by applying Z

errors to a perfect cluster state with probability pprep

= �1+exp�� / �kT���−1.

For the cubic lattice model, the dynamics in between mea-

surement steps produce an error channel on the individual

qubits no worse than a quantum operation of the same form

as �22� but with coefficients

p1 =
1

4
�1 + w��1 + w6� p2 =

1

4
�1 − w��1 − w6�

p3 =
1

4
�1 − w��1 + w6� p4 =

1

4
�1 + w��1 − w6� , �25�

and with w=e−��+	��/2. Consequently, the resultant errors for

a cubic lattice are no worse than those obtained by applica-

tion of the local depolarizing channel T���= �1− ps��

+
ps

3
�X�X+Y�Y +Z�Z� with ps=

1

4
�1+w��1−w6�, on each in-

dividual qubit.

The combined effect of these two errors leads to indepen-

dent errors on each qubit in the lattice with effective param-

eter q= pprep+
2

3
ps �cf. �19��. The threshold for such errors is

given by q�0.0293 �21�. Thus, if errors due to the dynamics

can be neglected, i.e., when ps→0, the error threshold for

preparation errors corresponds to a temperature bound of T

�0.28�. Conversely, if errors due to preparation can be ne-

glected, pprep→0, the error threshold corresponds to a

threshold for the environmental couplings of ��+	� /�
�4.6�10−3.

If this environment consists of a infinite temperature

background parametrized by � and a zero-temperature cool-

ing bath parametrized by �bath as in Sec. II D, the parameter

q is a function of these two parameters. The constraint

q��bath ,��=0.0293 defines the threshold value of � implicitly

in terms of �bath. We may then maximize this � over the bath

couplings and deduce an overall threshold of � /��3.4

�10−5 for the coupling to the environment provided that the

cooling rate for the bath is set at a “Goldilocks value” of
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�bath /��2.26�10−3. For this cooling rate the system is not

so hot that large preparation errors destroy entanglement, and

it is not so cold that large storage errors erase the logical

state. That is, if the coupling to the background environment

� is below this threshold, it is possible to devise a cooling

bath that allows for fault-tolerant MBQC.

IV. DISCUSSION

When the ground state of a physical system provides a

resource state for MBQC we must necessarily take into ac-

count the system’s dynamics. As we have discussed there are

several sources of complication compared with MBQC on a

static resource. While we may prepare the system very close

to its ground state, any measurements we then perform on it

will produce excitations and for a general adaptive measure-

ment scheme, involving classical feed forward, the resultant

dynamics between measurements will perturb the state and

affect the computation.

For the simple, dispersionless Hamiltonian �1� describing

a lattice of spins we showed that measurements should be

performed at a characteristic clock speed 2� /� defined via

the energy gap �. However, the presence of environmental

interactions further complicates matters. For the environ-

ment, we considered both ambient background effects and

also the effects of a thermal bath used to prepare and main-

tain the lattice system. We found that an optimal cooling

exists, which is a trade off between adequate shielding of the

system from a hot background and providing slow dynamics

that allow adaptive measurements. Furthermore, the loss in

fidelity due to this dynamics is conveniently described in

terms of a single quantum operation �22� that acts on the

logical state.

The importance of our results is that under certain condi-

tions, the environment produces Markovian errors on the

logical state and is thus amenable to error correction. Our

results are general and do not depend on the type of lattice or

its dimensionality. In the particular case of a cubic lattice we

may invoke fault-tolerance results for MBQC in the presence

of local independent depolarizing errors to obtain a threshold

of T�0.28� for the temperature of the prepared state when

dynamics may be neglected, and a threshold of ��+	� /�
�4.6�10−3 for the ratio of environmental couplings to en-

ergy gap when the storage errors dominate. In addition, we

obtained a threshold of � /��3.4�10−5 for the coupling to

a high temperature environment provided there is a zero-

temperature cooling bath with coupling �bath /��2.26

�10−3 to the lattice system.

Several issues remain that deserve investigation. For ex-

ample, we have not discussed possible imperfections in the

Hamiltonian or measurement errors, both of which would

modify the above thresholds. Furthermore, the free Hamil-

tonian behavior suggests the obvious strategy of performing

all measurements at or near the clock cycles of �=2� /�.

However more complicated measurement strategies may ex-

ist that produce high fidelities in the presence of a fixed

cooling.

While the above formalism may be adapted to different

settings or more particular questions, another key outstand-

ing issue is the effect of finite-time measurements in which

the measurements themselves are not instantaneous but are

spread over some small finite interval of time. Such a situa-

tion requires a more elaborate analysis than the one pre-

sented here, especially when the measurement time becomes

comparable with the clock cycle time �.
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