Mitchell, Robert, lloyd, david, van de Water, Leon et al. (8 more authors) (2018) Effect of Pretreatment Method on the Nanostructure and Performance of Supported Co Catalysts in Fischer−Tropsch Synthesis. ACS Catalysis. pp. 8816-8829. ISSN 2155-5435
Abstract
ABSTRACT: Understanding precursor transformation to active catalysts is crucial to heterogeneous Fischer−Tropsch (FT) catalysis directed toward production of hydrocarbons for transportation fuels. Despite considerable literature on FT catalysis, the effect of pretreatment of supported cobalt catalysts on cobalt dispersion, dynamic atomic structure, and the activity of the catalysts is not well understood. Here we present systematic studies into the formation of active catalyst phases in supported Co catalyst precursors in FT catalysis using in situ environmental (scanning) transmission electron microscopy (E(S)TEM) with single-atom resolution under controlled reaction environments for in situ visualization, imaging, and analysis of reacting atomic species in real time, EXAFS, XAS, DRIFTS analyses, and catalytic activity measurements. We have synthesized and analyzed dried reduced (D) and dried calcined reduced (DC) Co real catalysts on reducible and nonreducible supports, such as SiO2, Al2O3, TiO2, and ZrO2. Comparisons of dynamic in situ atomic structural observations of reacting single atoms, atomic clusters, and nanoparticles of Co and DRIFTS, XAS, EXAFS, and catalytic activity data of the D and DC samples reveal in most cases better dispersion in the D samples, leading to a larger number of low-coordination Co0 sites and a higher number of active sites for CO adsorption. The experimental findings on the degree of reduction of D and 27 DC catalysts on reducible and nonreducible supports and correlations between hexagonal (hcp) Co sites and the activity of the catalysts generate structural insights into the catalyst dynamics, important to the development of efficient FT catalysts.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2018 American Chemical Society. This is an author-produced version of the published paper. Uploaded in accordance with the publisher’s self-archiving policy. Further copying may not be permitted; contact the publisher for details. |
Dates: |
|
Institution: | The University of York |
Academic Units: | The University of York > Faculty of Sciences (York) > Physics (York) The University of York > Faculty of Sciences (York) > Chemistry (York) |
Depositing User: | Pure (York) |
Date Deposited: | 22 Aug 2018 14:50 |
Last Modified: | 12 Dec 2024 00:12 |
Published Version: | https://doi.org/10.1021/acscatal.8b02320 |
Status: | Published |
Refereed: | Yes |
Identification Number: | 10.1021/acscatal.8b02320 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:134908 |
Download
Filename: Accepted_Manuscript_File_Gai_and_Boyes_et_al_.pdf
Description: Accepted_Manuscript_File_Gai_and_Boyes_et_al_