Tange, R orcid.org/0000-0003-0867-1573
(2019)
On the first restricted cohomology of a reductive Lie algebra and its Borel subalgebras.
Annales de l'Institut Fourier, 69 (3).
pp. 1295-1308.
ISSN 0373-0956
Abstract
Let k be an algebraically closed field of characteristic p>0 and let G be a connected reductive group over k. Let B be a Borel subgroup of G and let g and b be the Lie algebras of G and B. Denote the first Frobenius kernels of G and B by G1 and B1. Furthermore, denote the algebras of regular functions on G and g by k[G] and k[g], and similarly for B and b. The group G acts on k[G] via the conjugation action and on k[g] via the adjoint action. Similarly, B acts on k[B] via the conjugation action and on k[b] via the adjoint action. We show that, under certain mild assumptions, the cohomology groups H1(G1,k[g]), H1(B1,k[b]), H1(G1,k[G]) and H1(B1,k[B]) are zero. We also extend all our results to the cohomology for the higher Frobenius kernels.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: | |
Copyright, Publisher and Additional Information: | © Association des Annales de l’institut Fourier, 2019. Certains droits réservés. Cet article est mis à disposition selon les termes de la licence Creative Commons attribution – pas de modification 3.0 France. http://creativecommons.org/licenses/by-nd/3.0/fr/. |
Keywords: | Cohomology; Frobenius kernel; reductive group |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mathematics (Leeds) > Pure Mathematics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 14 Jun 2018 16:01 |
Last Modified: | 28 Aug 2020 02:54 |
Status: | Published |
Publisher: | Association des Annales de I'Institut Fourier |
Identification Number: | 10.5802/aif.3271 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:132013 |