Silaev, M, Winyard, T and Babaev, E (2018) Non-London electrodynamics in a multiband London model: Anisotropy-induced nonlocalities and multiple magnetic field penetration lengths. Physical Review B, 97 (17). 174504. ISSN 2469-9950
Abstract
The London model describes strongly type-2 superconductors as massive vector field theories, where the magnetic field decays exponentially at the length scale of the London penetration length. This also holds for isotropic multiband extensions, where the presence of multiple bands merely renormalizes the London penetration length. We show that, by contrast, the magnetic properties of anisotropic multiband London models are not this simple, and the anisotropy leads to the interband phase differences becoming coupled to the magnetic field. This results in the magnetic field in such systems having N+1 penetration lengths, where N is the number of field components or bands. That is, in a given direction, the magnetic field decay is described by N+1 modes with different amplitudes and different decay length scales. For certain anisotropies we obtain magnetic modes with complex masses. That means that magnetic field decay is not described by a monotonic exponential increment set by a real penetration length but instead is oscillating. Some of the penetration lengths are shown to diverge away from the superconducting phase transition when the mass of the phase-difference mode vanishes. Finally the anisotropy-driven hybridization of the London mode with the Leggett modes can provide an effectively nonlocal magnetic response in the nominally local London model. Focusing on the two-component model, we discuss the magnetic field inversion that results from the effective nonlocality, both near the surface of the superconductor and around vortices. In the regime where the magnetic field decay becomes nonmonotonic, the multiband London superconductor is shown to form weakly-bound states of vortices.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2018 American Physical Society. This is an author produced version of a paper published in Physical Review B. Uploaded in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mathematics (Leeds) > Pure Mathematics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 05 Jun 2018 10:38 |
Last Modified: | 05 Jun 2018 10:38 |
Status: | Published |
Publisher: | American Physical Society |
Identification Number: | 10.1103/PhysRevB.97.174504 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:131660 |