Brouns, S.J.J., Jore, M.M., Lundgren, M. et al. (7 more authors) (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 321 (5891). pp. 960-964. ISSN 0036-8075
Abstract
Prokaryotes acquire virus resistance by integrating short fragments of viral nucleic acid into clusters of regularly interspaced short palindromic repeats (CRISPRs). Here we show how virus-derived sequences contained in CRISPRs are used by CRISPR-associated (Cas) proteins from the host to mediate an antiviral response that counteracts infection. After transcription of the CRISPR, a complex of Cas proteins termed Cascade cleaves a CRISPR RNA precursor in each repeat and retains the cleavage products containing the virus-derived sequence. Assisted by the helicase Cas3, these mature CRISPR RNAs then serve as small guide RNAs that enable Cascade to interfere with virus proliferation. Our results demonstrate that the formation of mature guide RNAs by the CRISPR RNA endonuclease subunit of Cascade is a mechanistic requirement for antiviral defense.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2008 American Association for the Advancement of Science. This is an author produced version of a paper subsequently published in Science. Uploaded in accordance with the publisher's self-archiving policy. |
Keywords: | provides acquired-resistance; streptococcus-thermophilus; repeats; identification; elements; dna; evolutionary; sequence; viruses; system |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Chemical and Biological Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 25 Apr 2018 08:51 |
Last Modified: | 25 Apr 2018 08:54 |
Published Version: | https://doi.org/10.1126/science.1159689 |
Status: | Published |
Publisher: | American Association for the Advancement of Science |
Refereed: | Yes |
Identification Number: | 10.1126/science.1159689 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:129773 |