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Abstract

Prokaryotes acquire virus resistance by integrating short fragments of viral nucleic acid into 

clusters of regularly interspaced short palindromic repeats (CRISPRs). Here we show how virus-

derived sequences contained in CRISPRs are used by CRISPR-associated (Cas) proteins from the 

host to mediate an antiviral response that counteracts infection. After transcription of the CRISPR, 

a complex of Cas proteins termed Cascade cleaves a CRISPR RNA precursor in each repeat and 

retains the cleavage products containing the virus-derived sequence. Assisted by the helicase Cas3, 

these mature CRISPR RNAs then serve as small guide RNAs that enable Cascade to interfere with 

virus proliferation. Our results demonstrate that the formation of mature guide RNAs by the 

CRISPR RNA endonuclease subunit of Cascade is a mechanistic requirement for antiviral defense.

The clusters of regularly interspaced short palindromic repeat (CRISPR)–based defense 

system protects many bacteria and archaea against invading conjugative plasmids, 

transposable elements, and viruses (1–8). Resistance is acquired by incorporating short 

stretches of invading DNA sequences in genomic CRISPR loci (1, 9, 10). These integrated 

sequences are thought to function as a genetic memory that prevents the host from being 

infected by viruses containing this recognition sequence. A number of CRISPR-associated 

(cas) genes (11 –13) has been reported to be essential for the phage-resistant phenotype (1). 

However, the molecular mechanism of this adaptive and inheritable defense system in 

prokaryotes has remained unknown.

The Escherichia coli K12 CRISPR/cas system comprises eight cas genes: cas3 (predicted 

HD-nuclease fused to a DEAD-box helicase), five genes designated casABCDE, cas1 
(predicted integrase) (13), and the endoribonuclease gene cas2 (14) (Fig. 1A and table S1). 

In separate experiments, each Cas protein was tagged at both the N and C terminus and 
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produced along with the complete set of untagged Cas proteins (15). Affinity purification of 

the tagged component enabled the identification of a protein complex composed of five Cas 

proteins: CasA, CasB, CasC, CasD, and CasE (Fig. 1B). The complex, denoted Cascade 

(CRISPR-associated complex for antiviral defense), could be isolated from E. coli lysates 

using any of the tagged subunits of the complex as bait, except for CasA.

The function of Cascade was studied by analyzing the effect of in-frame cas gene knockouts 

(16) on the formation of transcripts of the CRISPR region in E. coli K12 (Fig. 1A). Northern 

analysis of total RNA with single-stranded spacer sequences as a probe showed transcription 

of the CRISPR region in the direction downstream of the cas2 gene (Figs. 1A and 2A) and 

no transcription in the opposite direction. Analysis of control strains (wild type and a non-

cas gene knockout) revealed a small CRISPR-RNA (crRNA) product of ᙺ57 nucleotides 

(Fig. 2A). The same product was present in much higher amounts in the casA, casB, and 

casC knockout strains but absent from strains lacking the overlapping genes casD and casE 
(Fig. 2A). The small crRNAs seem to be cleaved from a multi-unit crRNA precursor (pre-

crRNA) (7, 17, 18), as is evident from the presence of two and three repeat-spacer units 

(ᙺ120 and ᙺ180 nucleotides) that show up in the ∆casA, ∆casB, and ∆casC strains (Fig. 

2A). The ∆casE strain contained a large pre-crRNA, suggesting that the disruption of this 

gene prevents pre-crRNA cleavage.

To study the accumulation and cleavage patterns of crRNAs in the E. coli K12 knockout 

strains in more detail and to rule out any effects of the gene disruptions on the expression of 

downstream or upstream cas genes, the five subunits of Cascade and the K12-type pre-

crRNA were expressed in E. coli BL21(DE3), which lacks endogenous cas genes (19). 

Northern analysis showed that crRNAs of ᙺ57 nucleotides were only produced in strains 

containing the Cascade complex (Fig. 2B). By omitting the individual subunits one by one, it 

became apparent that the small crRNA was absent only in the strain that lacked casE (Fig. 

2B), indicating that this is the only Cascade subunit essential for pre-crRNA cleavage.

Activity assays with purified Cascade showed that the complex is capable of cleaving the E. 
coli K12 pre-crRNA into fragments of ᙺ57 nucleotides in vitro (Fig. 2C). However, no 

cleavage was observed with either pre-crRNA from E. coli UTI89, which contains repeats 

with a different sequence (20), or a non-crRNA template (Fig. 2C). The RNA cleavage 

reaction proceeded in the absence of divalent metal ions and adenosine triphosphate and 

reached saturation level within 5 min. To investigate whether the CasE subunit is sufficient 

for pre-crRNA cleavage activity, it was overproduced as a fusion with the E. coli maltose 

binding protein (MalE). Like the complete Cascade, the CasE fusion protein cleaved only 

the K12-type pre-crRNA (Fig. 2D), showing that CasE is an unusual endoribonuclease that 

does not require the other Cascade subunits. We cannot rule out the possibility that pre-

crRNA cleavage is an auto-catalytic, ribozyme-like reaction, in which CasE is an essential 

RNA chaperone.

CasE belongs to one of the numerous families of repeat-associated mysterious proteins, the 

largest and most diverse class of Cas proteins (12, 13). The crystal structure of a CasE 

homolog from Thermus thermophilus HB8 shows that the protein contains two domains 

with a ferredoxin-like fold, and displays overall structural similarity to a variety of RNA-
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binding proteins (13, 21). On the basis of structure and amino acid conservation analysis of 

this protein family (fig. S1), the invariant residue His20 was mutated to Ala to analyze the 

effect on pre-crRNA cleavage. Northern blots indicated that crRNAs of ᙺ57 nucleotides 

were no longer formed in the strain containing Cascade-CasEH20A (Fig. 2E). Moreover, 

although the mutated CasE was still incorporated into Cascade, the pre-crRNA cleaving 

ability of purified Cascade was abolished (Fig. 2F), providing further support for the 

essential role of CasE in pre-crRNA cleavage and suggesting that the conserved His residue 

is involved in catalysis.

The crRNA cleavage sites were examined by simultaneous expression of K12-type pre-

crRNA and Cascade. Under these conditions, the purification of Cascade yielded substantial 

amounts of copurified RNAs of ᙺ57 nucleotides (Fig. 3A). Cloning and sequencing of this 

Cascade-bound RNA revealed that 85% of the clones [67 out of 79 clones (67/79)] were 

derived from crRNAs, of which 78% (52/67) started with the last eight bases of the repeat 

sequence (AUAAACCG) (Fig. 3B and fig. S2). This well-defined 5ᓉ end was followed by a 

complete spacer sequence and a less well-defined 3ᓉ sequence ending in the next repeat 

region. A transcript of a single palindromic repeat can fold as a stable stem-loop of seven 

base pairs, which may facilitate recognition by RNA-binding Cas proteins (8, 20), such as 

CasE. The pre-crRNA cleavage site (PCS) appeared to be located immediately upstream of 

the 3ᓉ terminal base of the stem-loop formed by the repeat (Fig. 3B). The clone library did 

not contain crRNAs of 61 nucleotides, which would be the result of a single endonuclease 

cleavage event in each repeat, given the size of a repeat (29 nucleotides) and most spacers 

(32 nucleotides). Instead, in agreement with experimental observations (Figs. 2 and 3A), the 

crRNAs were truncated at the 3ᓉ end by at least two guanosine bases from the endonuclease 

cleavage site, removing several stem-forming bases.

To test whether crRNA-loaded Cascade gives rise to phage resistance, two artificial 

CRISPRs were designed against phage Lambda (ͭ). Each of these CRISPRs targeted four 

essential ͭ  genes (fig. S3). The coding CRISPR (C1–4) produced crRNAs complementary to 

both the mRNA and the coding strand of these four genes, whereas the template CRISPR 

(T1–4) targeted only the template strand of the same proto-spacer regions (fig. S3). A 

nontargeting CRISPR containing wild-type (WT) spacers with no similarity to the phage 

genome served as a control. Plaque assays with E. coli showed that the introduction of either 

one of these anti-ͭ phage CRISPRs in a strain expressing only Cascade did not result in 

reduced sensitivity of the host to a virulent Lambda phage (ͭvir) (Fig. 4A). However, strains 

that expressed Cascade and Cas3 were much less sensitive to phage infection. The template 

CRISPR rendered the strain insensitive to the phage at the highest phage titer tested (>107-

fold less sensitive than the control strain), whereas the coding CRISPR reduced the 

sensitivity 102fold (Fig. 4A) and produced plaques with a diameter 
1

10 of the standard ͭ 
plaque. The phage resistance phenotype was lost when Cascade was omitted (Fig. 4A), 

proving that both Cascade and Cas3 are required in this process. Moreover, strains 

containing Cas3 and Cascade-CasEH20A displayed a sensitive phenotype, which shows that 

pre-crRNA cleavage is mechanistically required for phage resistance. The co-expression of 

Cas1 and Cas2 had no effect on the sensitivity profile of the strain (Fig. 4A), suggesting that 

these proteins are involved in other stages of the CRISPR/cas mechanism. Plaque assays 
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with single anti-ͭ  spacers (fig. S3) showed that the total reduction of sensitivity observed 

with the four anti-ͭ  spacers (C1–4 and T1–4) (Fig. 4A) results from a synergistic effect of the 

individual spacers (C1 to T4) (Fig. 4B).

Our results demonstrate that a complex of five Cas proteins is responsible for the maturation 

of pre-crRNA to small crRNAs that are critical for mediating an antiviral response. These 

mature crRNAs contain the antiviral spacer unit flanked by short RNA sequences derived 

from the repeat on either side termed the 5ᓉ and 3ᓉ handle, which may serve as conserved 

binding sites for Cascade subunits, as has been suggested previously (20). The Cascade-

bound crRNA serves as a guide to direct the complex to viral nucleic acids to mediate an 

antiviral response. We hypothesize that crRNAs target virus DNA, because anti-ͭ CRISPRs 

of both polarities lead to a reduction of sensitivity to the phage. The model is supported by 

previous observations that virus-derived sequences are integrated into CRISPR loci, 

irrespective of their orientation in the virus genome (1–4, 7, 9,10,13). We conclude that the 

transcription of CRISPR regions—and the cleavage of pre-crRNA to mature crRNAs by Cas 

proteins—is the molecular basis of the antiviral defense stage of the CRISPR/cas system, 

which enables prokaryotes to effectively prevent phage predation.
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Fig. 1. 
The composition of the Cascade complex. (A) Schematic diagram of the CRISPR/cas gene 

cluster of E. coli K12 W3110. Repeats and spacers are indicated by diamonds and 

rectangles, respectively. A palindrome in the repeat is marked by convergently pointing 

arrows. Protein family nomenclature is as described in (11, 12). (B) Coomassie blue—

stained SDS-polyacrylamide gel of the affinity purified protein complex using either the N-

terminal StrepII-tag (S) or C-terminal His-tag (H) of each of the subunits CasB, CasC, 

CasD, or CasE as bait. Asterisks indicate the 5.5 kD larger double-tagged subunits. Marker 

sizes in kilodaltons on the left; location of untagged subunits on the right.
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Fig. 2. 
Cascade cleaves CRISPR RNA precursors into small RNAs of ᙺ57 nucleotides (marked by 

arrows). (A) Northern analysis of total RNA of WT E. coli K12 (WT), a non-cas gene 

knockout (∆u, uidA, ͤ -glucuronidase), and Cascade gene knockouts using the single-

stranded spacer sequence BG2349 (table S2) as a probe. (B) Northern blot as in (A) of total 

RNA from E. coli BL21 (DE3) expressing the E. coli K12 pre-crRNA and either the 

complete or incomplete Cascade complex. (C) Activity assays with purified Cascade using 

in vitro transcribed ͣ-32P–uridine triphosphate–labeled pre-crRNA from E. coli K12 (repeat 

sequence: GAGUUCCCCGCCAGCGGGGAUAAACCG), E. coli UTI89 (repeat sequence: 

GUUCACUGCCGUACAGGCAGCUUAGAAA), and non-crRNA as substrates. (D) 

Activity assays as shown in (C) for 15 min with purified MalE-LacZͣ and MalE-CasE 

fusion proteins. (E) Northern blot as shown in (B) with Cascade or Cascade-CasEH20A. (F) 

Activity assays as shown in (C) for 30 min with purified Cascade or Cascade-CasEH20A.
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Fig. 3. 
Cleaved crRNAs remain bound by Cascade. (A) Denaturing polyacryl-amide gel showing 

the crRNA (marked by the arrow) isolated from purified Cascade in the absence and 

presence of co-expressed pre-crRNA. (B) Secondary structure of pre-crRNA repeats and 

example sequences of cloned crRNAs indicating the PCS and crRNA handles.
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Fig. 4. 
Engineered CRISPRs confer resistance to ͭ in the presence of Cascade and Cas3. (A) Effect 

of the presence of different sets of cas genes on the sensitivity of E. coli to phage ͭ vir. Cells 

were equipped with one of two engineered CRISPRs containing four anti-ͭ spacers each 

(fig. S3). The C1–4 CRISPR produces crRNA complementary to the coding strand and 

mRNA of ͭ vir, and the T1–4 CRISPR targets only the template strand. The sensitivity of 

each strain to phage ͭvir is represented as a histogram of the efficiency of plaquing, which is 

the plaque count ratio of the anti-ͭ CRISPR to that of the nontargeting control CRISPR. (B) 

Effect of single anti-ͭ  spacers (fig. S3) on the sensitivity of E. coli to ͭ vir. Error bars 

indicate 1 SD.
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