Besselink, R, Rodriguez-Blanco, JD, Stawski, TM et al. (2 more authors) (2017) How Short-Lived Ikaite Affects Calcite Crystallization. Crystal Growth & Design, 17 (12). pp. 6224-6230. ISSN 1528-7483
Abstract
The pathways of CaCO₃ crystallization are manifold, often involving one or several metastable amorphous or nanocrystalline intermediate phases. The presence of such intermediates is often overlooked, because they are short-lived and/or occur at small molar fractions. However, their occurrence does not just impact the mechanisms and pathways of formation of the final stable CaCO₃ phase, but also affects their crystal size, shape, and structure. Here we document the presence of a short-lived intermediate through in situ and time-resolved small and wide-angle X-ray scattering combined with high resolution electron microscope observations. When ikaite forms concomitant with the dissolution of amorphous calcium carbonate (ACC) but prior to calcite formation, fairly large glendonite-type calcite crystals grow despite the presence of citrate ligands that usually reduce crystal size. These were ideal seeding crystals for further crystallization from supersaturated ions in solution. In contrast, in the absence of ikaite the crystallization of calcite proceeds through transformation from ACC, resulting in fine-grained spherulitic calcite with sizes ∼8 times smaller than when ikaite was present. Noteworthy is that the formation of the intermediate ikaite, although it consumes less than 3 mol % of the total precipitated CaCO₃, still clearly affected the calcite formation mechanism.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2017 American Chemical Society. This is an author produced version of a paper published in Crystal Growth & Design. Uploaded in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Earth Surface Science Institute (ESSI) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 26 Feb 2018 11:04 |
Last Modified: | 17 Dec 2018 10:21 |
Status: | Published |
Publisher: | American Chemical Society |
Identification Number: | 10.1021/acs.cgd.7b00743 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:127900 |