Mantova, V orcid.org/0000-0002-8454-7315 (2011) Involutions on Zilber fields. Rendiconti Lincei - Matematica e Applicazioni, 22 (2). pp. 237-244. ISSN 1120-6330
Abstract
In this paper, we briefly outline the definition of Zilber field, which is a structure analogue to the complex field with the exponential function. An open conjecture, including Schanuel’s Conjecture, is whether the complex field is itself one of these structure. In view of this conjecture, a natural question raised by Zilber, Kirby, Macintyre and others is whether they have an automorphism of order two akin to complex conjugation. We announce, without proof, the positive answer: for cardinality up to the continuum there exists an involution of the field commuting with the exponential function. Moreover, in the case of cardinality of the continuum, the automorphism can be taken such that its fixed field is exactly ℝ, and the kernel of the exponential function is 2πiZ.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mathematics (Leeds) > Pure Mathematics (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 08 Nov 2017 15:15 |
Last Modified: | 08 Nov 2017 15:15 |
Status: | Published |
Publisher: | European Mathematical Society |
Identification Number: | 10.4171/RLM/598 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:115292 |