Liu, D, Whitehead, J, Alfarra, MR et al. (13 more authors) (2017) Black-carbon absorption enhancement in the atmosphere determined by particle mixing state. Nature Geoscience, 10 (3). pp. 184-188. ISSN 1752-0894
Abstract
Atmospheric black carbon makes an important but poorly quantified contribution to the warming of the global atmosphere. Laboratory and modelling studies have shown that the addition of non-black-carbon materials to black-carbon particles may enhance the particles’ light absorption by 50 to 60% by refracting and reflecting light. Real-world experimental evidence for this ‘lensing’ effect is scant and conflicting, showing that absorption enhancements can be less than 5% or as large as 140%. Here we present simultaneous quantifications of the composition and optical properties of individual atmospheric black-carbon particles. We show that particles with a mass ratio of non-black carbon to black carbon of less than 1.5, which is typical of fresh traffic sources, are best represented as having no absorption enhancement. In contrast, black-carbon particles with a ratio greater than 3, which is typical of biomass-burning emissions, are best described assuming optical lensing leading to an absorption enhancement. We introduce a generalized hybrid model approach for estimating scattering and absorption enhancements based on laboratory and atmospheric observations. We conclude that the occurrence of the absorption enhancement of black-carbon particles is determined by the particles’ mass ratio of non-black carbon to black carbon.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2017 Macmillan Publishers Limited, part of Springer Nature. This is an author produced version of a paper published in Nature Geoscience. Uploaded in accordance with the publisher's self-archiving policy. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Inst for Climate & Atmos Science (ICAS) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 28 Mar 2017 09:33 |
Last Modified: | 06 Sep 2017 18:34 |
Status: | Published |
Publisher: | Nature Publishing Group |
Identification Number: | 10.1038/ngeo2901 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:114204 |