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Atmospheric black carbon makes an important but poorly quantified contribution to 

the warming of the global atmosphere. Laboratory and modelling studies have shown 

that the addition of non-black carbon materials to black carbon particles may enhance 

the particles’ light absorption by 50 to 60% by refracting and reflecting light. Real 

world experimental evidence for this ‘lensing’ effect is scant and conflicting, showing 

that absorption enhancements can be less than 5% or as large as 140%. Here we 

present simultaneous quantifications of the composition and optical properties of 

individual atmospheric black carbon particles. We show that particles with a mass ratio 

of non-black carbon to black carbon of less than 1.5, which is typical of fresh traffic 

sources, are best represented as having no absorption enhancement.  In contrast, black 

carbon particles with a ratio greater than 3, which is typical of biomass burning 

emissions, are best described assuming optical lensing leading to an absorption 

enhancement. We introduce a generalised hybrid model approach for estimating 

scattering and absorption enhancements based on laboratory and atmospheric 

observations. We conclude that the occurrence of the absorption enhancement of black 

carbon particles is determined by the particles’ mass ratio of non-black carbon to black 

carbon. 

 

Atmospheric black carbon (BC) makes the second largest single contribution after CO2 to 

climate forcing in the present-day atmosphere1. Previous detailed modelling and laboratory 

studies have shown that weakly absorbing non-BC materials contained within the same 

particles as BC can significantly enhance the absorption per unit mass of the latter through 

refraction and internal reflections, sometimes referred to as the ‘lensing effect’2,3. A “core-

shell” description4 has often been applied to describe this effect when coatings envelop the 

central BC core, but this oversimplifies the complex particle morphologies5. The non-BC 



components may not be evenly distributed and the BC core is not necessarily completely 

enclosed, and as such the absorption enhancement predicted using the core-shell approach 

could greatly overestimate the real value3. Microscopy5,6 can examine BC microphysical 

properties but has limited quantitative capability and may evaporate semi-volatile materials. 

By detecting the remaining non-BC fragment after laser induced incandescence with a single 

particle soot photometer (SP27, DMT inc.), Sedlacek et al.8 and Moteki et al.9 reported the 

non-core-shell structure of some BC particles, however they did not provide an appropriate 

model approach to estimate optical properties. 

 

Measurement of single BC particle mass ratio 

In this study, for the first time we quantify the mixing state of individual BC particles using 

morphology-independent measurements of the total particle mass (Mp) and the mass of the 

refractory black carbon, rBC (MrBC) from a variety of laboratory and field experiments. We 

determined the mass ratio, MR (= Mnon-BC/MrBC), where Mnon-BC is the mass of non-BC 

material in a BC containing particle: 

Mnon-BC = Mp - MrBC (1). 

We then challenge different models of the BC optical properties and in so doing, determine 

the optimum model description.  

Fig. 1 shows the ambient traffic BC number has a maximum at a MR of 0.3. The peak in the 

laboratory diesel BC number distribution during normal engine running conditions (NR) is at 

MR=1, consistent with volatility measurements from diesel engines10. The higher MR 

measured in the laboratory compared with ambient traffic could result from evaporation of 

coatings in the ambient or differences in sources. Diesel generated under cold idle conditions 

in the laboratory (CI) generates particles with a range of MR after injection in the chamber as 



a result of coagulation effects. Ambient BC dominated by solid fuel (SF) burning exhibits a 

much higher MR. Data taken during bonfire night (BN) has a higher MR than SF.  

 

The transitional behaviour of BC optical properties 

The single particle scattering cross section of BC at 1064 nm (Smodel) is estimated using a 

number of models and compared with direct measurements (Smeasure), integrated over the 

collection solid angle of the detector. The model approaches (see Methods) make different 

assumptions about the physical configuration of BC containing particles. These are that the 

BC and non-BC components are mixed: (a) effectively externally, with BC and non-BC 

components contributing independently to the total scattering; (b) such that the BC is 

enveloped by non-BC materials in a core-shell arrangement; (c) homogenously and modelled 

using either the Maxwell-Garnett or Bruggemann mixing rules, and (d) the different 

components exist as an agglomeration of smaller, independent particles in a core-shell 

configuration, according to a simplified Rayleigh-Debye-Gans (RDG) model11. The 

refractive index of rBC, mrBC, at 1064nm is 2.26+1.26i12,13 and coating refractive index is 

1.5+0i11. The material density (used to calculate volume) of rBC (ȡrBC) is set as 1.8 g cm-3 14, 

the calculation of the associated non-BC density (ȡnonBC) is described in Methods. 

If the BC is not at the centre of the particle, the particle will scatter less than the ideal core-

shell prediction 3. We present an extreme hypothetical case of this situation using a model 

that treats the BC and non-BC components as independent but coincident optical scattering 

elements, in other words as externally mixed particles (although still part of the same 

detection event). In the following comparisons, the concentric core-shell approach (Sc-s) is 

used as a reference for modelling the absorption enhancement3, and both Smeasure and Smodel 

are normalized to Sc-s. When Smeasure/Sc-s is less than unity, it is likely that the 'lensing' effect is 

reduced. Fig. 1 shows Smeasure/Sc-s and Smodel/Sc-s as a function of MR for 2fg mass selected 



particles from different sources (this mass chosen as it presented the best data coverage 

across all values of MR, see top panel of Fig. 1). When MR<0.1, Smeasure/Ss-c is close to unity 

and all models are in close agreement. This indicates that Mie calculations are appropriate for 

the light scattering of uncoated BC, validating the choice of mrBC and the insensitivity of the 

Mie calculations to the morphology of largely externally mixed BC at 1064 nm. 

When MR is between 0.1 and 1.5, Smeasure/Ss-c is consistent with the Smodel/Ss-c values derived 

using an externally mixed model. This could be because the non-BC material is not sufficient 

to encapsulate the BC, but is instead partially filling in the voids between BC spherules or 

attached to them, consistent with Moteki et al.9. For MR > 3, we find the measured scattering 

cross section is best reproduced by the core-shell model. The sensitivity of Smodel to the 

assumed non-BC density may partly explain Smeasure/Sc-s >1 in this region. Some individual 

particles with high non-BC content may not be core-shell-like6, however this has not affected 

the statistics derived here. When MR is above ~20, all models tend to agree, as the behaviour 

converges on that of almost pure non-BC material. Similar phenomena are found at other 

particle masses (Supplementary Fig. 7). The range of MR values over which neither the 

external nor internal mixing assumptions effectively describe light scattering by BC particles 

is relatively narrow for all particle sizes. Models with different representations of internal 

mixing do not yield significantly different values of Smodel compared to that of the core-shell 

model.  

The additional non-BC material causes the measured light scattering cross section to be 

greater than that calculated for the bare BC core and we term this ratio the scattering 

enhancement (Esca) (Supplementary Fig. 8A). The large fraction of the scattering in the near 

infrared results from the high real refractive index of rBC, and as such in the majority of 

scattering occurs within the core. Thus we expect that the phenomenon that causes Esca will 



have a similar effect on absorption enhancement (Eabs), defined as the ratio of the absorption 

cross section of the measured particle to that of the BC core in isolation.   

 

The measured and calculated BC absorption enhancement  

Our single particle measurements of Mp and MrBC show that MR can be directly related to Esca 

(Supplementary Fig. 8B) and hence we can derive MR values for experiments (see 

supplementary section S9) where particles were not selected by mass prior to measurement 

(Fig. 2A). A hybrid optical model is introduced, where it is assumed there is no Eabs for a 

single particle when MR is below the lower transition threshold, and is linearly interpolated to 

the upper threshold, where the enhancements are modelled using core-shell. In the 

experiments conducted with no mass selection, the Eabs for single particles in each 

experiment were determined and used to estimate MR and derive the bulk Eabs for the 

ensemble of particles. To make the results directly comparable with recent literatures 

reporting bulk properties, we have also used the measured single particle MR to derive an 

average MR of the particle population (MR,bulk, see Methods) and conducted direct 

measurements of the absorption of the ensemble. Our experiments using laboratory diesel 

clearly exhibit the transitional behaviour of Eabs with increased MR and are well predicted by 

our hybrid model (Fig. 2C). This contrasts with the calculations using the core-shell model, 

which overestimates Eabs. A repeat experiment to that (shown as star markers in Fig. 2C) was 

conducted and showed consistent behaviour. The ambient results (see Methods, 

Supplementary Table 3) also demonstrate good agreement between the hybrid model and the 

measured Eabs and improved performance of the model compared to other approaches.  

The calculated bulk Eabs for other datasets using this approach are shown in Fig. 2B and are 

in good agreement with Eabs derived from our measurements where these are available.  The 

majority of BC from urban traffic sources is best described as externally mixed, with overall 



calculated bulk Eabs <1.2; the relatively wide range of MR for traffic sources in rural or semi-

rural environments may reflect different ages of BC and this may account for differences 

between our near-field values and those previously reported from processed traffic sources15. 

The ambient solid fuel BC has not been isolated because of the ubiquity of traffic sources in 

the urban environment. The BC from mixed traffic and solid fuel burning has a bulk Eabs of 

1.2-1.4, consistent with a recent study16, though the MR,bulk in our study is lower because of 

the high influence of fresher urban traffic sources. Bimodal behaviour is likely when 

sampling mixed sources as traffic BC dominates at low Esca and solid fuel or biomass burning 

sources show high Esca
17 since the BC is largely mixed with non-BC materials. The latter 

significantly contributes to enhanced bulk Eabs. Such transitional behaviour in Eabs has 

previously been reported in the literature for laboratory-generated BC from biomass 

burning18 and controlled flames19. The Eabs derived from MR,bulk measurements may differ 

significantly because of the different distributions of MR in single BC particles and the 

nonlinear effects this introduces.  

 

Global model application 

The approach we have presented provides a robust and generic method for determining when 

absorption of BC is significantly enhanced by non-BC material based solely on the relative 

abundance of the mass of BC and non-BC within a single particle. To assess its implications, 

we use the global model of Mann et al., (2010)20 that represents aerosol using a modal 

scheme. Fresh BC is considered ‘insoluble’ until particles have undergone sufficient 

atmospheric processing. The MR was calculated for each aerosol mode in each grid box of the 

model. Fig. 3 shows that the mixing state varies dramatically depending on source 

(Supplementary Fig. 12) and region. The frequency distributions of MR in the main pollution 

regions show consistent behaviour with our measurements (Fig. 2), specifically high MR 



values in biomass burning regions and lower MR values in regions dominated by fossil fuel 

emissions. Biomass burning BC has significant associated non-BC material and should be 

represented as internally mixed but fresh BC from traffic should be treated as effectively 

externally mixed with no absorption enhancement. These model results highlight that there is 

a need to consider the effect of the variation of mixing state on the particle optical properties 

and point to a consistent approach to examine the role of optical enhancement of atmospheric 

BC absorption in global models.  
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Figure captions  

Fig. 1. The measured and modelled optical properties as a function of mass ratio. Panel A 

shows the particle number distribution against MR under environments; Panel B shows the 

single particle scattering cross section (at 2fg mass) derived from various optical models and 

from direct observation, relative to the core-shell model. Each point represents the median 

value of single particle data in each MR bin. The bars represent the variation from varying 

non-BC density between 1.0-1.2 g cm-3 (BN and SF) and 0.9-1.1 g cm-3 (cold idle). The grey 

bar shows the range of MR when transition occurs.   

 

Fig. 2. The BC optical properties and mass ratios from a wide range of sources. A) 

Histograms of Esca for poly-dispersed BC particles. The top axis shows the corresponding MR. 

The grey column denotes the transition of optical properties. B) The calculated bulk Eabs 

using the hybrid model, solid round markers apply for the internal mixing fraction at 

transition with bars showing the variation by varying the lower threshold of MR. The green 

triangle markers are direct observation. C) The measured and modelled (Mie core-shell and 

hybrid model) bulk Eabs as a function of MR,bulk, the bars are standard deviation over mean.   

 

Fig. 3. The annually averaged global distributions of MR at the surface for insoluble and 

soluble Aitken mode aerosol modelled using GLOMAP. The subpanels show the BC MR 

histograms of both modes representing the regions with greatest BC emissions. The grey bar 

in each histogram shows the range of MR values below which the optical properties of BC 



particles should be treated as externally mixed and above which they should be treated as 

internally mixed.  

  



Methods 

Data and analysis methods. The laboratory study was conducted as part of the Combustion 

Particles in the Atmosphere: Properties, Transformations, Fate & Impacts (COM-PART) 

project. The experimental configuration is schematically shown in Supplementary Fig. 1. The 

diesel soot is sampled from the Manchester Aerosol Chamber (18 m3 collapsible teflon bag) 

after the injection of exhaust from an automotive VW 1.9L SDI diesel engine on a 

dynamometer rig (CM12; Armfield Ltd., Hampshire, UK) that was fitted with an oxidising 

catalytic converter. This is considered representative of emissions from EURO 4 light-duty 

diesel engines, which are in widespread use throughout Europe. A normal running condition 

(2000rpm, 30% load and 10 minutes warm up, referred as NR) and a cold idle condition (CI) 

without warm up or engine load were investigated. 

The ambient experiment was conducted in the Manchester urban environment from 29/10-

10/11 in 2014, covering the UK festival known as Guy Fawkes’ or bonfire night (BN), 

marked by a large number of intensive open wood fires and fireworks across the country. In 

addition, solid fuel burning (principally wood) is a significant source of fuel for residential 

heating during the winter season in the UK21,22. All measurements are performed on dry 

particles. 

The source contribution was found by applying the Multilinear regression (ME-2) 

factorization23 to the organic aerosol (OA) mass spectra measured by the aerosol mass 

spectrometer (AMS). This method uses target profiles (TP) as inputs to the model. Five OA 

sources were identified: solid fuel burning OA (SFOA), hydrocarbon-like OA (HOA, related 

to traffic emissions), cooking OA (COA), semi-volatile oxygenated OA (SVOOA) and low 

volatility oxygenated OA (LVOOA). The bonfire period is identified by the strong 

enhancements of the aerosol loading from 18:30, 05/11/2014 to 03:30, 06/11/2014 



(Supplementary Fig. 2A). The first is to determine a solution representing the non-bonfire 

period. The best fit (total local minima Q/Qexp = 3.4) is obtained by constraining the solution 

using the Paris TP 24, which constrains traffic OA with an a-value of 0.1 and cooking OA 

with an a-value of 0.5; and a total Q/Qexp of 4.4 was obtained using London TP. The second 

step included data from the entire period and extrapolated the solution space for SFOA, HOA 

and COA from the first analysis. The best fit is obtained with a-values of 0.3 for SFOA and 

0.1 for HOA and a total Q/Qexp of 3.9 (Supplementary Fig. 2B). Wood and solid fuel burning 

sources of organic matter during BN cannot be separated by ME-2, but the two distinct time 

periods are presented separately as BC may feature differently. Supplementary Fig. 2C shows 

that during the morning rush-hour (07:30-10:00) traffic represents the major source, whereas 

between 20:00-23:00 solid fuel burning significantly contributed in addition to the traffic 

source. 

We measured Mp and MrBC of the same individual particles in each experiment by novel 

coupling of a Centrifugal Particle Mass Analyser (CPMA, Cambustion Ltd) 25, which selects 

particles of known and quantifiable charge-to-mass ratios across a narrow and well-defined 

distribution, and a single particle soot photometer (SP2, DMT Inc.), which is introduced 

downstream of CPMA and determines MrBC and the intensity of scattered light at 1064nm for 

each BC particle sampled.  

The incandescence signal of the SP2 is proportional to the MrBC but independent of the 

particle morphology and coatings 26, which is calibrated using the material considered to only 

contain rBC, after all of the coatings have been removed. This is best represented by the 

laboratory-generated diesel soot that has not undergone photochemistry. We tested the SP2 

response to soot produced from the diesel engine under normal running (NR) and cold idle 

conditions after particles had passed through a thermodenuder at 400°C and were mass-

selected using a CPMA. At the same particle mass, a higher incandescence signal of the SP2 



means the particle contains a higher mass fraction of rBC. As Supplementary Fig. 3 shows, 

the thermodenuded NR contains a higher fraction of rBC whereas the coatings of cold idle 

BC may have not been completely removed. We therefore used the thermodenuded BC core 

mass from the NR experiment as the calibration when determining rBC mass. The uncertainty 

of the measured MrBC is <3% (from calibration). Note that for all CPMA data presented here, 

the default M/dM resolution of 5 was used, according to the FWHM of the transfer function 

described by Olfert and Collins 25. While this translates to a precision of 20% for single 

particles, we should note that the average masses (and mass ratios) of the particle ensembles 

should be considerably more accurate, as these are the averages of many different particles. 

The multiply charged and neutral particles exiting CPMA are screened out through SP2 data 

processing (rejecting particles whose MrBC or measured scattering cross section are outside of 

a plausible range) and MR is only calculated for singly charged particles.  

The detection efficiency of the SP2 was determined by measuring the NR diesel soot 

downstream of the CPMA in parallel with a condensation particle counter (CPC). The 

volume equivalent diameter (Dve) of rBC is obtained by assuming an rBC density of 1.8 g cm-

3 27. By assuming the CPC is detecting particles with 100% efficiency, the SP2/CPC ratio can 

be considered to be the detection efficiency of the SP2 (Supplementary Fig. 4). An increase 

in the laser power of the SP2 can increase the detection efficiency of the smaller rBC. The 

scattering cross section of 200nm PSL at Ȝ=1064nm integrated over the detectable solid angle 

of the SP2 (Csca,PSL200) is 314.16nm2, and the laser power is measured as the SP2 scattering 

signal relative to the Csca,PSL200. In this study, a laser power of 14.76*Csca,PSL200 (laser current 

3000mA) is used for the laboratory study and  a laser power of 12.32*Csca,PSL200 (laser current 

2800mA) is used for the ambient experiment. Both laser powers give a collection efficiency 

of over 80% for rBC mass >0.2fg. Considering that the size of primary spherules of soot are 



30-50nm 28, equivalent to Dve in the range 0.02-0.1fg, this SP2 detection efficiency is 

sufficient to measure the small rBC. 

The scattering signal of BC measured by the SP2 is processed using a leading edge only 

(LEO) technique to reconstruct the distorted scattering signal when BC passes through the 

SP2 laser beam 29. The LEO methodology is detailed in Liu et al.22: briefly, the scattering 

signals for the last 200 non-BC scattering-only particles are used to determine the laser 

profile; the number of data points used for LEO is optimised to represent the scattering signal 

before the onset of particle volatilisation, and is automatically obtained by comparing the 

measured signal and laser profile, with uncertainty <12% (from the parametrization of the 

LEO fitting). Only single particles with successful LEO fitting are included in the calculation 

of optical properties.  

Wavelength-dependent absorption coefficient (in Mm-1) was measured by a photoacoustic 

soot spectrometer (PASS-3, DMT). The PASS-3 green (532ௗnm) channel was calibrated 

using absorbing polystyrene spheres referenced to a certified NO2 standard 30. The blue 

(405ௗnm) and red (781ௗnm) channels were matched to the green using thermally denuded 

diesel particles, assuming an absorption Ångström exponent (AAE) of unity 31. 

The effective density (ȡeff) of soot particles was obtained from equation (2) by measurements 

of the mobility diameter (Dmob) using an SMPS downstream of the CPMA which determined 

the particle mass (Mp), ܯ௣ ൌ ଵ଺ܦߨ௠௢௕ଷ ൈ  ,௘௙௙,  (2)ߩ

At the same mass, a lower ȡeff indicates a more fractal particle shape 32. The NR diesel soot 

particles have a more fractal shape compared to Cold Idle (Supplementary Fig. 5). The lack 

of dependence of ȡeff for Cold Idle implies that the particle shape is approaching spherical, 



and so the Dmob under Cold Idle conditions represents its geometric diameter. The density of 

coating (ȡnon-BC) can then be obtained from Equation (3),  

(Mp-MrBC)/ȡnon-BC+MrBC/ȡrBC=Mp/ȡeff,  (3), 

Using a ȡrBC=1.8 gcm-3 and the SP2 measured MrBC, the ȡnon-BC is calculated to be 1.04-

1.07gcm-3 for CI diesel soot. The NR diesel soot may have a different ȡnon-BC due to different 

composition of the non-BC fraction. The density of oxidised organic aerosol has previously 

been determined to be approximately 1.3 g cm-3 33. Given that in wintertime the non-BC 

materials associated with  ambient BC are mainly composed of primary organic matter with a 

lower degree of oxidation 34, a range of ȡnon-BC=1-1.2 g cm-3 35 has been used here. The 

laboratory-generated soot is freshly formed and contains little associated secondary materials, 

thus a lower range of ȡnon-BC=0.9-1.1 g cm-3 is used. 

Note that this variation in effective density will cause changes to the transfer function of the 

CPMA (according to the equations in Appendix A3 of the CPMA manual), effectively 

causing the M/dM resolution to vary from the nominal 5 by approximately ±20% - in the case 

of 2 fg undenuded particles, depending on the source. However, because we do not report 

CPMA-selected number concentrations and the effective density does not influence the 

median mass delivered, the effect of the resolution function here is limited to a ‘smoothing’ 

of the data in Fig. 1 and supplementary Fig. 7. For example, in the 2 fg case, this will be a 

smoothing in MR space of between 17 and 25% (relative FWHM of a pseudo-triangular 

function), which is small compared to the overall trends presented here. 

Modelling methods. The different model approaches for single BC particle optical properties 

are shown in Supplementary Fig. 6. The term externally mixed assumes the BC component 

(black sphere) is physically separated from the non-BC component (blue sphere), and the BC 

and non-BC will scatter the light independently. The idealised core-shell assumes the BC 

core is concentrically located inside the non-BC but remains in a separate phase to it. The 



homogenous mixing model assumes the BC component has been well mixed with the non-

BC at the molecular level. The Rayleigh-Debye-Gans (RDG) approximation simplifies the 

particle morphology by assuming the black carbon core is composed of many small primary 

spherules. The scattering is integrated over the specific collection solid angle of the SP2 

detector thus the asymmetry parameter of scattering is not relevant for this study.  

Modelled scattering cross sections are compared to measured values for different particle 

masses in Supplementary Fig. 7.  The grey bars show the MR for the transition of optical 

properties. The BC is considered to be effectively externally or internally mixed when the 

externally mixing (Sext) or core-shell model (Sc-s) can reproduce the measured scattering 

within 20%; the BC with measured scattering above 20% of the Sext but below 20% of the Sc-s 

is considered to be within transition region. The results are summarized in Supplementary 

Table 2. At small particle masses, such as 1fg, the transition occurs at a lower threshold MR 

compared to that at particle mass 2fg (Fig. 1), because a proportionally smaller non-BC mass 

is necessary to encapsulate a smaller BC core. A fraction of the particle number population 

from the diesel engine emission may include particles with mass below 1fg, however the MR 

is not determined for the smaller masses as a result of instrument limitations. The masses of 

these small particles are not significant and are therefore not thought to be important for the 

bulk optical properties. Large particle mass also decreases the threshold MR, possibly 

resulting from the increased absolute amount of non-BC material for larger particles. For 

particle masses of 5fg and 10fg, at the same MR, the BN source has a higher measured 

scattering compared to TR source. This may result from different formation mechanisms of 

BC from different sources. 

The model-calculated scattering enhancement (Esca) at 1064nm using the Mie-core-shell and 

external mixing approaches at different particle masses is shown in Supplementary Fig. 8A. 

The modelled results, which will be used as references, are to large extent independent of 



total particle mass. Supplementary Fig. 8B replicates these modelled curves and compares 

them with the SP2 measured Esca for the different BC types in the experiments presented in 

this paper. The observationally derived Esca shows a clear transition from agreement with the 

optical model assuming externally mixed BC and non-BC components for MR<1.5 to 

agreement with the optical model assuming a core-shell arrangement with the BC at the 

centre of a non-BC coating for MR>3. We have determined an average curve based on the 

data from all BC sources shown and used this to convert the measured Esca to MR for our 

much wider set of data when only the SP2 data were available. 

In the transition regime, an internally mixed fraction (Fin) is derived using a combination of 

the Mie-core-shell and the external mixing model that best matches the relationship between 

MR and Esca from the average of the observations in that region (Supplementary Fig. 8B, top 

panel). The Eabs in the transition regime can be calculated as: 

Eabs=Eabs,c-s×Fin+(1-Fin)×1  (4),         where 

Fin=0.57×MR-0.74   (when 1.5<MR<3)   (5), 

Where Eabs,c-s is the Eabs calculated by Mie core-shell model. There is no absorption 

enhancement in the model when the components are assumed to be externally mixed so 

Eabs=1 in this case. 

Supplementary Fig. 9A shows the evolution of BC properties since the engine emission 

injection.  For the laboratory diesel engine experiments conducted under cold idle conditions, 

an increase of BC coatings was observed due to coagulation in the aerosol chamber over 

time, whereby rBC-containing particles coalesced with those that contained no rBC 

(Supplementary Fig. 9A). The rBC mass and absorption coefficient (Babs) were measured by 

the SP2 and PASS-3 respectively. The PASS-3 periodically samples internally filtered air to 

determine the instrument baseline. The gap in the data was due to an external filter test 



carried out on all of the instruments. The mass absorption cross section (MAC) is calculated 

as the mass absorption per unit mass of rBC. The MAC for uncoated bulk rBC core is 

calculated using Mie theory (with a refractive index 1.85+0.71i 27) over the rBC core size 

distribution for each timestamp. The calculated MAC for uncoated BC in the green is lower 

than the previously reported value 7.5 g m-2 27, which may be because the latter is from BC 

measurements that have ubiquitous coatings associated with them. The absorption 

enhancement (Eabs) is calculated as the measured MAC over the MAC of the uncoated rBC. 

The absolute MAC values rely on the PASS calibration but the trends in Eabs will be manifest 

regardless of the absolute calibration.  

The mass median diameter (MMD) of the rBC core is almost constant throughout the 

experiment, but with increased BC coatings added. To directly compare the measured Eabs in 

the bulk, the MR in single particles is converted to MR in bulk (MR,bulk) by summation of the 

total non-BC and rBC single particle masses over a given period, expressed as:      

ோǡ௕௨௟௞ܯ ൌ σ ெೃǡ೔ൈெೝಳ಴ǡ೔೔ σ ெೝಳ಴ǡ೔೔    (6), 

Where i denotes the ith single particle.  

In the ambient, we measured the absorption coefficient switching between a direct inlet line 

and one through a catalytic stripper 36 (held at 400°C) every 30 mins (Supplementary Fig. 

10A). The heated line is corrected for thermophoretic losses by comparing the SP2-measured 

rBC mass between direct and heated line. The Eabs is determined as the ratio of absorption 

between direct line and averaged heated line adjacent to the direct line. Supplementary Fig. 

10B shows the absorption coefficient (Babs) at 532nm measured through the direct and heated 

lines when ambient was influenced by different sources for the entire experiment. The Eabs is 



obtained by orthogonal distance regression (ODR), constrained through the origin. The Eabs 

observed at 781nm is similar (TR 1.05±0.02; SF 1.14±0.02; BN 1.20±0.06).   

We apply the hybrid model to calculate the absorption for single particles and then work out 

the bulk Eabs by summation of the absorption of arising from all the single particles detected 

for each source (summarized in Supplementary Table 3). The hybrid model has higher 

agreement with observation whereas only applying the core-shell model largely overestimates 

Eabs. Though for all sources the 2-3fg core mass range is a major contribution to the BC 

particle core mass distribution (Fig. 1), the larger particles also contribute an important 

fraction in SF and BN environments. For these sources, we also tested the sensitivity in our 

calculated Eabs to the change in MR values bounding the transition regime at different core 

mass sizes. We have applied the MR values bounding the transition regime at 5fg and 10fg for 

these environments to our calculations of Eabs (Supplementary Table 3, data in brackets). This 

difference is not significant because the fraction of single particles affected by varying the 

threshold MR is minor (1.5% for SF and 9.3% for BN). This indicates that though these large 

particles significantly contribute to total absorption, the hybrid model is relatively insensitive 

to the different transition regimes applied at different masses. In addition, the modelled Eabs is 

slightly higher than the observation which means a fraction of externally mixed BC may have 

not been fully captured by the model. 

The global distribution of atmospheric aerosol was simulated using the 3D Global Model of 

Aerosol Processes (GLOMAP) 37, which is an extension to the TOMCAT chemical transport 

model, driven by analysed ECMWF meteorology. A horizontal resolution of 2.8°×2.8° and 

31 vertical levels between the surface and 10 hPa for the year 2008 is used. GLOMAP 

simulates the influence of aerosol microphysical processes on the particle size distribution 

represented using seven log-normal modes: a soluble nucleation mode, and both soluble and 

insoluble modes for Aitken, accumulation and coarse size ranges. Insoluble modes are 



assumed to be non-hygroscopic and not wet deposited via nucleation scavenging. Aerosol 

moves from insoluble to soluble modes through coagulation or after the condensation of ten 

monolayers of gas phase species (sulphuric acid and oxidised organics) 37. Rate of ageing 

through condensation therefore depends on the aerosol size distribution as well as oxidant 

and precursor gas concentrations. The modal aerosol scheme used here is a simplified 

description of the aerosol distribution and by necessity includes a simplified representation of 

aerosol processes including ageing. In previous work we demonstrated that the modal aerosol 

scheme matches results from a more detailed sectional aerosol scheme18, providing additional 

confidence in the results presented here. 
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