Lutz, S, Anesio, AM, Edwards, A et al. (1 more author) (2017) Linking microbial diversity and functionality of Arctic glacial surface habitats. Environmental Microbiology, 19 (2). pp. 551-565. ISSN 1462-2912
Abstract
Distinct microbial habitats on glacial surfaces are dominated by snow and ice algae, which are the critical players and the dominant primary colonisers and net producers during the melt season. Here we have for the first time evaluated the role of these algae in association with the full microbial community composition (i.e., algae, bacteria, archaea) in distinct surface habitats and on twelve glaciers and permanent snow fields in Svalbard and Arctic Sweden. We cross-correlated these data with the analyses of specific metabolites such as fatty acids and pigments, and a full suite of potential critical physico-chemical parameters including major and minor nutrients, and trace metals. We show that correlations between single algal species, metabolites, and specific geochemical parameters can be used to unravel mixed metabolic signals in complex communities, further assign them to single species and infer their functionality. The data also clearly show that the production of metabolites in snow and ice algae is driven mainly by nitrogen and less so by phosphorus limitation. This is especially important for the synthesis of secondary carotenoids, which cause a darkening of glacial surfaces leading to a decrease in surface albedo and eventually higher melting rates. This article is protected by copyright. All rights reserved.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Earth Surface Science Institute (ESSI) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 06 Sep 2016 10:22 |
Last Modified: | 05 Oct 2017 16:10 |
Published Version: | http://dx.doi.org/10.1111/1462-2920.13494 |
Status: | Published |
Publisher: | Wiley |
Identification Number: | 10.1111/1462-2920.13494 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:104238 |