Pohl, J, Thompson, H, Guijarro Valencia, A et al. (3 more authors) (2017) Structural Deflection's Impact in Turbine Stator Well Heat Transfer. Journal of Engineering for Gas Turbines and Power, 139 (4). 041901. ISSN 0742-4795
Abstract
In the most evolved designs, it is common practice to expose engine components to main annulus air temperatures exceeding the thermal material limit in order to increase the overall performance and to minimise the engine specific fuel consumption (SFC). To prevent overheating of the materials and thus the reduction of the component life, an internal flow system is required to cool the critical engine parts and to protect them. This paper shows a practical application and extension of the methodology developed during the five year research programme MAGPI. Extensive use was made of FEA (solids) and CFD (fluid) modelling techniques to understand the thermo-mechanical behaviour of a dedicated turbine stator well cavity rig, due to the interaction of cooling air supply with the main annulus. Previous work based on the same rig showed difficulties in matching predictions to thermocouple measurements near the rim seal gap. In this investigation, two different types of turbine stator well geometries were analysed, where further use was made of existing measurements of hot running seal clearances in the rig. The structural deflections were applied to the existing models to evaluate the impact in flow interactions and heat transfer. Additionally to the already evaluated test cases without net ingestion, cases simulating engine deterioration with net ingestion were validated against the available test data, also taking into account cold and hot running seal clearances. 3D CFD simulations were conducted using the commercial solver FLUENT coupled to the in-house FEA tool SC03 to validate against available test data of the dedicated rig.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Editors: |
|
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Mechanical Engineering (Leeds) > Institute of Engineering Thermofluids, Surfaces & Interfaces (iETSI) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 05 Jul 2016 11:54 |
Last Modified: | 11 Jan 2023 11:48 |
Published Version: | https://doi.org/10.1115/1.4034636 |
Status: | Published |
Publisher: | American Society of Mechanical Engineers (ASME) |
Identification Number: | 10.1115/1.4034636 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:101757 |