Jee, E., Bánsági, T., Taylor, A.F. et al. (1 more author) (2016) Temporal Control of Gelation and Polymerization Fronts Driven by an Autocatalytic Enzyme Reaction. Angewandte Chemie, 128 (6). pp. 2167-2171. ISSN 0044-8249
Abstract
Chemical systems that remain kinetically dormant until activated have numerous applications in materials science. Herein we present a method for the control of gelation that exploits an inbuilt switch: the increase in pH after an induction period in the urease-catalyzed hydrolysis of urea was used to trigger the base-catalyzed Michael addition of a water-soluble trithiol to a polyethylene glycol diacrylate. The time to gelation (minutes to hours) was either preset through the initial concentrations or the reaction was initiated locally by a base, thus resulting in polymerization fronts that converted the mixture from a liquid into a gel (ca. 0.1 mm min−1). The rate of hydrolytic degradation of the hydrogel depended on the initial concentrations, thus resulting in a gel lifetime of hours to months. In this way, temporal programming of gelation was possible under mild conditions by using the output of an autocatalytic enzyme reaction to drive both the polymerization and subsequent degradation of a hydrogel.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Chemical and Biological Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 13 Jul 2016 12:37 |
Last Modified: | 18 Nov 2016 17:11 |
Published Version: | http://dx.doi.org/10.1002/ange.201510604 |
Status: | Published |
Publisher: | Wiley |
Refereed: | Yes |
Identification Number: | 10.1002/ange.201510604 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:101700 |