Taylor, D.J., Saxton, H. orcid.org/0000-0001-7433-6154, Halliday, I. et al. (11 more authors) (2024) Evaluation of models of sequestration flow in coronary arteries—physiology versus anatomy? Computers in Biology and Medicine, 173. 108299. ISSN 0010-4825
Abstract
Background: Myocardial ischaemia results from insufficient coronary blood flow. Computed virtual fractional flow reserve (vFFR) allows quantification of proportional flow loss without the need for invasive pressure-wire testing. In the current study, we describe a novel, conductivity model of side branch flow, referred to as ‘leak’. This leak model is a function of taper and local pressure, the latter of which may change radically when focal disease is present. This builds upon previous techniques, which either ignore side branch flow, or rely purely on anatomical factors. This study aimed to describe a new, conductivity model of side branch flow and compare this with established anatomical models.
Methods and results: The novel technique was used to quantify vFFR, distal absolute flow (Qd) and microvascular resistance (CMVR) in 325 idealised 1D models of coronary arteries, modelled from invasive clinical data. Outputs were compared to an established anatomical model of flow. The conductivity model correlated and agreed with the reference model for vFFR (r = 0.895, p < 0.0001; +0.02, 95% CI 0.00 to + 0.22), Qd (r = 0.959, p < 0.0001; −5.2 mL/min, 95% CI −52.2 to +13.0) and CMVR (r = 0.624, p < 0.0001; +50 Woods Units, 95% CI −325 to +2549).
Conclusion: Agreement between the two techniques was closest for vFFR, with greater proportional differences seen for Qd and CMVR. The conductivity function assumes vessel taper was optimised for the healthy state and that CMVR was not affected by local disease. The latter may be addressed with further refinement of the technique or inferred from complementary image data. The conductivity technique may represent a refinement of current techniques for modelling coronary side-branch flow. Further work is needed to validate the technique against invasive clinical data.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | Crown Copyright © 2024 Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
Keywords: | Computational fluid dynamics; Coronary modelling; Hemodynamics; vFFR; Humans; Coronary Vessels; Coronary Angiography; Fractional Flow Reserve, Myocardial; Coronary Artery Disease; Hemodynamics; Coronary Stenosis; Predictive Value of Tests |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Medicine, Dentistry and Health (Sheffield) > School of Medicine and Population Health |
Funding Information: | Funder Grant number WELLCOME TRUST (THE) 214567/Z/18/Z |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 18 Jun 2024 14:59 |
Last Modified: | 24 Jan 2025 17:29 |
Status: | Published |
Publisher: | Elsevier BV |
Refereed: | Yes |
Identification Number: | 10.1016/j.compbiomed.2024.108299 |
Related URLs: | |
Sustainable Development Goals: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:213559 |