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A B S T R A C T

Background: Myocardial ischaemia results from insufficient coronary blood flow. Computed virtual fractional
flow reserve (vFFR) allows quantification of proportional flow loss without the need for invasive pressure-wire
testing. In the current study, we describe a novel, conductivity model of side branch flow, referred to as ‘leak’.
This leak model is a function of taper and local pressure, the latter of which may change radically when
focal disease is present. This builds upon previous techniques, which either ignore side branch flow, or rely
purely on anatomical factors. This study aimed to describe a new, conductivity model of side branch flow and
compare this with established anatomical models.
Methods and results: The novel technique was used to quantify vFFR, distal absolute flow (Qd) and
microvascular resistance (CMVR) in 325 idealised 1D models of coronary arteries, modelled from invasive
clinical data. Outputs were compared to an established anatomical model of flow. The conductivity model
correlated and agreed with the reference model for vFFR (r = 0.895, p < 0.0001; +0.02, 95% CI 0.00 to + 0.22),
Qd (r = 0.959, p < 0.0001; −5.2 mL/min, 95% CI −52.2 to +13.0) and CMVR (r = 0.624, p < 0.0001; +50
Woods Units, 95% CI −325 to +2549).
Conclusion: Agreement between the two techniques was closest for vFFR, with greater proportional differences
seen for Qd and CMVR. The conductivity function assumes vessel taper was optimised for the healthy state
and that CMVR was not affected by local disease. The latter may be addressed with further refinement of the
technique or inferred from complementary image data. The conductivity technique may represent a refinement
of current techniques for modelling coronary side-branch flow. Further work is needed to validate the technique
against invasive clinical data.

1. Introduction

Ischaemic heart disease (IHD) is the leading cause of death world-
wide. It results, most commonly, from occlusive epicardial stenoses that
reduce coronary blood flow. Invasive quantification of proportional
flow (Q) obstruction with fractional flow reserve (FFR) is the current
gold standard evaluation of epicardial lesion significance, quantify-
ing proportional reduction in coronary Q [1]. Compared with stan-
dard angiography, FFR-guided revascularisation improves patient out-
comes [2]. However, FFR increases procedural time, cost, and risk of
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complication [3,4]. Computed coronary physiology, derived from com-

putational fluid dynamics (CFD) simulations, provides an alternative

to traditional invasive indices of coronary 𝑄, negating the need for

invasive pressure-wire assessment.

Clinical CFD workflows commonly utilise geometries reconstructed

from either CT [5] or planar coronary angiography [6]. As the latter

may be performed in the cardiac catheterisation laboratory whilst pa-

tients lay on the operating table, planar angiography-derived CFD has

been proposed as a tool for rapid physiological assessment, informing
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clinical decisions in real time [7]. The approach to coronary geometric
reconstruction from planar angiography may be subcategorised into
truncated tree (TT) [8–14] and single lumen (SL) models [6,15]. In
TT models, side branches (typically >1 mm diameter [8,9]) of major
bifurcations originating from the vessel of interest are included in
geometries. Flow is then partitioned between bifurcation daughter
branches by prescribing either flow splitting or a distal boundary
resistance (R) according to Murray’s law of vascular scaling [16]:

𝑄 ∝ 𝐷𝑐 , 𝑅 ∝ 𝐷−𝑐 . (1)

Above, D is the diameter of the daughter vessel. Murray’s original
law predicted a power exponent (c) of 3.0, with subsequent theoretical
analyses suggesting a range between 2.0 and 3.0 [16–18]. One issue
of TT models is the magnitude of side branches that may be included
in reconstructions is limited by the resolution of planar angiography,
with vessels less than 1 mm frequently excluded. Moreover, inclusion
of multiple bifurcations increases geometry complexity and may there-
fore prolong reconstruction and simulation time, limiting utility for
informing real time clinical decisions.

Unlike TT models, SL models consider only the coronary artery of
interest. The lack of side branch inclusion means they neglect side
branch Q [6,15]. Recent developments have used Murray’s law to
infer the diameter, and therefore flow loss, of side branches from the
degree of taper of the reconstructed vessel. These techniques distribute
side branch flow loss by modelling the reconstructed vessel with a
porous wall boundary, prescribing a wall leakage that is a function
of the taper. This was first described by Gosling et al. who assumed
an even distribution of side branches in the stream-wise direction
of the vessel and thus described uniform flow loss along the entire
length of the vessel [19]. This ‘homogenous’ technique was initially
validated using a 1D model of coronary flow, in arteries from 80
patients with confirmed coronary artery disease (CAD), where inclusion
of side branch losses significantly changed absolute 𝑄, but not virtual
FFR (vFFR) [19]. A second ‘regional’ porous wall method was later
developed, in which side branch 𝑄 was distributed according to local
healthy vessel taper [20]. These SL models of side branch 𝑄, therefore,
capture the cumulative effect of all side branches across the length of
reconstructed vessel, including those too small to be visualised with
planar angiography. They may also allow for faster reconstruction and
simulation times, compared with TT models.

A common theme amongst current TT and SL models is that both
determine the magnitude of side branch 𝑄 purely from local vessel ge-
ometry, meaning side-branch 𝑄 is unaffected by the local pressure field.
For the in-vivo artery, a stenosis would decrease distal pressure, and
in turn, likely affect local flow profiles and distal side branch 𝑄. This
physics is not represented in current, anatomically based, models of
side branch 𝑄. While such approximations may be acceptable for deriv-
ing ‘virtual’ FFR (vFFR) [19,21], the emerging importance of absolute
coronary flow (mL/min) [22,23] and wall shear stress [24] demands
updated methodology, better able to capture the true in-vivo flow
phenomena. In this study, we aim to describe a novel physics based,
wall conductivity-dependent porous wall method that incorporates the
influence of local pressure fields into 1D side branch 𝑄 simulation.
We also refine the current 1D model of anatomical side branch 𝑄, to
account for side branch losses in the treatment of fluid inertia (termed
modified anatomical). To determine what is most clinically relevant for
modelling side branch 𝑄, we investigate effects of these novel models
of flow on vFFR, absolute distal Q (Qd) and coronary microvascular
resistance (CMVR) in idealised coronary arteries, adapted from invasive
clinical data. Of this analysis, our primary outcome was to compare pre-
existing (reference) anatomical and novel conductivity models of flow.
Secondary outcomes included comparison of reference and modified
anatomical models and an analysis of the effect of varying Murray’s
flow-diameter exponent.

2. Methods

2.1. Clinical data

Data were collected from adult patients (≥18 years old) undergo-
ing physiological assessment for evaluation of suspected myocardial
ischaemia with non-obstructive coronary arteries (INOCA) at the Catha-
rina Hospital, Eindhoven, NL. Absolute flow in mL/min and proximal
pressure at the corresponding location were measured using the con-
tinuous infusion thermodilution technique and Rayflow™ catheter [23,
25]. Patients provided informed consent and data collection was ap-
proved by the research ethics board [Medical research Ethics Com-
mittees United (MEC-U)]. These patient-specific quantities were used
to define the luminal, proximal flow and proximal pressure boundary
conditions (BC) for calculations (See Section 2.4.3).

2.2. Vessel segmentation and idealised geometry construction

3D vessel anatomy was reconstructed from two angiographic pro-
jections [6], separated by ≥30◦. The reconstruction inlet was placed at
the location of invasive flow and pressure assessment and the outlet,
4–6 cm distal to this point. All vessels were free of focal epicardial
disease, which was confirmed with visual analysis and 3D quantitative
coronary angiography (QCA). At least one case of each of the three
major epicardial arteries (left anterior descending, left circumflex and
right coronary artery) were included, to represent the normal range
of coronary anatomy and disease. Radius data were sampled along
the centre line of the reconstructed vessel, using 200 points for each
centreline, to produce a 1D axi-symmetric model of each vessel. The
vessel was characterised by the graph (𝑥𝑖, 𝑟𝑖), 𝑖 ∈ {0, 1, 2, ..200}, where
𝑥 was the stream-wise co-ordinate. For 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1, 𝑟𝑖 was assumed
to vary linearly, so that the vessel was comprised of segments, each
of which was a conical frustum, with its circular faces centred upon
the sample points 𝑥𝑖. See Fig. A.6. Filtration was used to ensure that
vessel radius was a monotonically decreasing function (Fig. 1). These
vessels formed the baseline healthy cases upon which focal stenoses
were imposed to generate idealised cases. For a full description of the
patient-specific geometries used please Fig. B.7 and Table 1.

2.3. Hemodynamic descriptions

2.3.1. Hemodynamics within a healthy vessel
Fossan et al. first used 1D model models of flow as a basis for quanti-

tative assessment of vFFR. Gosling et al. then adapted this methodology
to expose the role of sequestration flow or leak [19,21,26]. To maintain
consistency with this prior art, we used a similar 1D model, which is
solved numerically. Our three 1D models of vessel flow are all derived
in the appendices and are used to compute the flow and pressure as
functions of the stream-wise co-ordinate, 𝑥. All required the same input
data:

1. The artery luminal boundary, in form of 𝑟(𝑥) data
2. The patient-specific proximal flow
3. The patient-specific proximal pressure

The models designated reference anatomical and modified anatomi-
cal employ anatomical leak. For anatomical models, sequestration flow
was determined entirely from the vessel geometry, with pressure a
derived quantity. In the conductivity model, the sequestration flow was
determined by a known wall conductance function 𝐾(𝑥).

All three models rely on boundary (initial) conditions for pressure
and flow

𝑝(0) = 𝑝0, 𝑄(0) = 𝑄0 (2)

and compute the pressure and flow within a set of vessels which are
synthesised from the six geometries and the virtual stenoses. In all
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Fig. 1. Schematic of computational workflow from clinical data acquisition (left), through 3D reconstruction (middle) to reduction to 1D and filtration (right).

models the boundary conditions, stenosis and vessel geometry fully de-
termine the distal flow and pressure and therefore an effective CMVR:

CMVR =
𝑃𝑑

𝑄𝑑
(3)

where 𝑃𝑑 and 𝑄𝑑 represent the distal pressure and flow respectively.

2.3.2. Reference anatomical model
This model was validated by Gosling et al. on patient data [19].

From the Navier–Stokes equation and a leak-free form of the continuity
equation, applied between the 𝑖th and (i+1)th segment of vessel (see
Fig. A.6), we show in Appendices A.4 and A.5 that

𝑝(𝑥𝑖+1) = 𝑝(𝑥𝑖) +
𝜌𝑄2

𝑖

2𝐴2
𝑖

−
𝜌𝑄2

𝑖+1

2𝐴2
𝑖+1

− 2(𝜁 + 2)𝜋𝜇 ∫
𝑥𝑖+1

𝑥𝑖

𝑄(𝑥)𝐴(𝑥)−2𝑑𝑥. (4)

Above 𝑝𝑖, 𝑄𝑖 denote the pressure and flow at the inlet of the 𝑖th conic
frustum segment of the vessel, 𝜇 = 3.5 × 10−3 Pa s is the viscosity
of blood, 𝜌 = 1050 kg/m3 and 𝜁 = 4.31 is a dimensionless empirical
parameter [19,21,27], obtained from computational fluid dynamics. In
the integrand, luminal area 𝐴(𝑥) ∶ 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1 is obtained straight-
forwardly, from an assumed linear variation within the segment, of the
vessel radius (see Appendix A.2). 𝑄(𝑥) is obtained from the anatomical

leak model (see Appendix A.5), in the form 𝑄(𝑥) = 𝑄𝑖

(
𝜋𝑟𝑖(𝑥)

2

𝐴𝑖

) 𝑐

2
, 0 ≤

𝑥 ≤ (𝑥𝑖+1−𝑥𝑖). Flow at the circular faces of each conical frustum segment
was assigned as follows:

𝑄𝑖 = 𝑄0

(
𝐴𝑖

𝐴0

) 𝑐

2

. (5)

where 𝑐 is the Murray exponent, inlet (proximal) pressure 𝑝0 and
flow 𝑄0, were measured patient-specific values, which modulate as
discussed in Section 2.4.3. The numerical solution (in the absence of
a stenotic perturbation) computed pressures and flow at the faces of
200 conical frustra, from Eqs. (4) and (5) respectively.

2.3.3. Modified anatomical model
From the Navier–Stokes and leaky continuity equations, applied

to 𝑖th conic frustum segment (see Fig. A.6), we use in Appendix A.5
an alternative, decoupled pressure quadrature which takes account of
vessel leak in the inertia term

𝑝(𝑥𝑖+1) = 𝑝(𝑥𝑖) + 𝜌
(
𝑐 − 1

𝑐 − 2

) 𝑄2
𝑖

𝐴2
𝑖

− 𝜌
(
𝑐 − 1

𝑐 − 2

) 𝑄2
𝑖+1

𝐴2
𝑖+1

−
2(𝜁 + 2)𝜋𝜇𝑄0

𝐴

𝑐

2

1

∫
𝑥𝑖+1

𝑥1

𝐴
𝑐

2
−2
𝑑𝑥 (6)

where all constants are defined as above, computation of flow used
Eq. (5); inlet (proximal) pressure 𝑝0 and flow 𝑄0, which were measured
patient-specific values.

2.3.4. Conductivity model
This model may be expressed as an initial value problem- a coupled

system of non-linear, first-order ordinary differential equations for 𝑝(𝑥)
and 𝑄(𝑥) together with the boundary conditions (or initial conditions)
for 𝑥 = 0 stated above

𝑑𝑄

𝑑𝑥
= −

𝐾(𝑥)

𝛿𝑥
𝑝(𝑥) (7)

𝑑𝑝

𝑑𝑥
=

𝜌

𝐴3

𝑑𝐴

𝑑𝑥
𝑄2 +

2𝜌𝐾(𝑥)

𝐴2
𝑄𝑝(𝑥) −

2(𝜁 + 2)𝜋𝜇

𝐴2
𝑄

For full derivation see Appendix A.6. The above system was solved
using an explicit Runge–Kutta (4,5) algorithm [28]. Given a ‘hydraulic
conductance’ function, 𝐾(𝑥), obtained from pressure and flow solutions
𝑝(𝑥), 𝑄(𝑥) from the operation of our gold standard reference anatomical
model using the following

𝐾(𝑥) =
𝑐

2

𝑑 log(𝐴)

𝑑𝑥

𝑄(𝑥)

𝑝(𝑥)
, (8)

which was derived in Appendix A.6 from Darcy’s law [29], alongside
some simple (to state) assumptions. Accordingly, our artery wall con-
ductivity is, by construction, consistent with Murray’s law. Crucially,
we assumed that 𝐾(𝑥) was stationary on timescales characteristic of
atherogenesis. A function 𝐾(𝑥) was computed for each of the six vessel
geometries, which is characteristic of that vessel in health.

2.4. Stenosed model of flow

Only focal, concentric stenoses were considered. The abrupt changes
in geometry encountered at stenoses involve significant radial flow,
invalidating the assumptions of 1D hydrodynamics. Hence, to facilitate
the introduction of the stenoses, a separate sub-model was required
for use alongside our models of flow through the un-stenosed vessel
part. In 2011 Liang et al. [27] utilised, from previous experimental
work [30,31], a relationship between the pressure drop across and
flow through a severe constriction applied to the circle of Willis. In
the stenosed model of flow, pressure loss is derived from a Bernoulli
resistor, with a characteristic equation:

𝛥𝑝(𝑄) = 𝐴𝑄 + 𝐵𝑄|𝑄|, 𝐴 =
𝐾𝑣𝜇

𝐴0𝐷0

, 𝐵 =
𝐾𝑡𝜌

2𝐴2
0

(
𝐴0

𝐴𝑠
− 1

)
. (9)

Here, 𝐴0 and 𝐴𝑠 are the cross-sectional areas of the healthy and stenotic
segments, respectively, 𝐷0 and 𝐷𝑠 are the healthy and stenotic vessel



Computers in Biology and Medicine 173 (2024) 108299

4

D.J. Taylor et al.

diameters, while 𝐾𝑣 and 𝐾𝑡 are empirical constants:

𝐾𝑣 =
32(0.83𝐿𝑠 + 1.64𝐷𝑠)

𝐷0

(
𝐴0

𝐴𝑠

)2

, 𝐾𝑡 = 1.52.

where, 𝐿𝑠 is the length of the stenosis and 𝐿0 the length of the parent
vessel. All parameters used were the same as in previous literature [27,
30]. No leak occurs in the stenosed section of the artery.

2.4.1. Idealised geometry reconstruction
The focal stenosis introduced into the healthy patient specific ge-

ometries, further information in Fig. B.7 and Table 1, were artificially
parameterised as follows

𝐿𝑠 = 3, 5, 7 mm, (10)
𝑥𝑠

𝐿0

=
𝑛

4
, 𝑛 ∈ {1, 2, 3},

𝐴𝑠

𝐴0

=
𝑚

20
, 𝑚 ∈ {10, 11,… , 18}.

where 𝑥𝑠 denotes the location of the centre of the stenosis. This set
of stenoses were used to ‘perturb’ healthy vessels. Such configurations
were applied to represent the range of epicardial disease within the
clinically ambiguous ‘grey zone’, in which advanced CFD assessment is
most clinically useful. In this way, an ensemble of 3 × 3 × 9 × 6 = 486

virtual patient arteries were synthesised. Simulations were performed
primarily using Murray’s exponent of 𝑐 =

7

3
, reflecting the most

commonly accepted morphometric scaling law [17]. To investigate the
effects of varying this coefficient, Murray’s original exponent of 3.0 was
also used and compared against results obtained using 7

3
[16].

2.4.2. Calculation methodology
To determine the pressure and flow in the presence of a stenosis,

the perturbed vessel was divided into three sections: from proximal to
distal

1. A leaky, unstenosed proximal segment 𝑥 <

(
𝑥𝑠 −

𝐿𝑠

2

)
, was

solved utilising one of the models detailed above (reference
anatomical, modified anatomical, conductivity). The segment
was initialised by a modulated form of the patient-specific aortic
signals 𝑝0 and 𝑄0 (see below), yielding values of 𝑝(𝑥), 𝑄(𝑥) ∶ 𝑥 ≤(
𝑥𝑠 −

𝐿𝑠

2

)
.

2. A non-leaky stenosed segment 𝑥 ∶
(
𝑥𝑠 −

𝐿𝑠

2

) ≤ 𝑥 ≤ (
𝑥𝑠 +

𝐿𝑠

2

)
,

solved using Eq. (9) and 𝑄
(
𝑥𝑠 −

𝐿𝑠

2

)
(from step (1)), yielding

𝛥𝑝

(
𝑄(𝑥𝑠 −

𝐿𝑠

2
)
)
.

3. A leaky healthy distal section 𝑥 >
(
𝑥𝑠 +

𝐿𝑠

2

)
, again solved using

the model in (1) above, bounded by a pressure 𝑝
(
𝑥𝑠 +

𝐿𝑠

2

)
+

𝛥𝑝

(
𝑄(𝑥𝑠 −

𝐿𝑠

2
)
)
(from steps (1) and (2) above) and a flow

𝑄

(
𝑥𝑠 −

𝐿𝑠

2

)
, from (1).

For non-stenosed cases, patient-specific invasively measured
Rayflow™ absolute flow measurements defined the inlet flow boundary
condition and the healthy vessel’s conductivity function, 𝐾(𝑥). Intro-
ducing a stenosis increases the resistance of the vessel, reducing its inlet
flow (for a given proximal pressure). Accordingly, the measured inlet
flow used to inform the proximal calculation in step (1) above should
be modulated for each stenosis, as described in Section 2.4.3.

2.4.3. Inlet boundary condition modulation
For all cases, invasive measured proximal pressure was used to

inform the inlet pressure boundary condition, 𝑝0. However, since the
invasive inlet flow result is invalidated when stenotic perturbations
are introduced, particularly for the more severe stenoses, 𝑄0 should be
personalised, according to the vessel vFFR

𝑄0 → vFFR ×𝑄0, vFFR ≡ 𝑝𝑑

𝑝0
. (11)

Above, 𝑝𝑑 denotes the pressure distal to the stenosis. Let 𝑄
′
0
denote

the personalised value of 𝑄0, which may be determined in a way
which is consistent with the assumptions of FFR and our most validated
reference anatomical model of flow [19,21,32]. Assuming the pressure
drop across the stenosis dominates proximal pressure losses, Eq. (9)
gives 𝑝𝑑 ≈ 𝑝0 − 𝛥𝑝(𝑄), hence

vFFR =

(
𝑝0 − 𝛥𝑝(𝑄)

𝑝0

)
= 1 −

(𝐴𝑄 + 𝐵𝑄|𝑄|)
𝑝0

.

Here, 𝑄 is the stenosis inlet flow 𝑄 = 𝑄′
0

(
𝐴(𝑥𝑠)

𝐴(0)

)𝑝∕2 ≡ 𝑘0𝑄
′
0
. Hence,

from Eqs. (11)

𝑣𝐹𝐹𝑅 =
𝑄′

0

𝑄0

= 1 −

(
𝐴𝑘0𝑄

′
0
+ 𝐵𝑘2

0
𝑄′

0
|𝑄′

0
|
)

𝑝0
, 𝑘0 = 𝑄0

(
𝐴(𝑥𝑠)

𝐴(0)

)𝑝∕2

(12)

Assuming 𝑄′
0
> 0, the above yields a quadratic for our personalised

inlet flow, 𝑄′
0
, with only one positive solution

𝑄′
0
=

−
(
𝐴𝑘0𝑄0 + 𝑝0

)
±

√(
𝐴𝑘0𝑄0 + 𝑝0

)2
+ 4𝐵𝑘2

0
𝑄2

0
𝑝0

2𝐵𝑘2
0
𝑄0

(13)

The corresponding personalised vFFR may be obtained from vFFR=
𝑄′
0

𝑄0
.

Please see Fig. 2 for a schematic of the analysis protocol.

2.5. Statistical analysis

Categorical variables are presented as frequency (percentage) and
were compared using Chi-square and logistic regression as appropriate.
The Shapiro–Wilk test was used to assess the spread of data. Normally
distributed continuous variables are presented as mean (± standard
deviation), while skewed data are presented as median [inter-quartile
range]. For parametric data, mean values of haemodynamic parameters
were compared using an unpaired t-test for two independent samples
and a one-way ANOVA to compare three or more samples. For non-
parametric data, the Mann–Whitney U test was used to compare two
independent samples and the Kruskal Wallis test to compare three or
more samples.

Correlation was quantified using Pearson’s correlation coefficient
(𝑟). Agreement between techniques was quantified using two statistical
techniques: Passing and Bablok regression and Bland Altman plots.
Passing and Bablok regression was used as this is a nonparametric
technique, not sensitive to outliers and therefore well suited to our non-
normally distributed data. Regression results are presented as a scatter
diagram and regression line bounded by 95% confidence limits shaded
in grey. The c and m coefficients represent constant and proportional
differences between measurement techniques respectively. Bland Alt-
man plots display the mean bias between techniques and 95% limits of
agreement. A statistical threshold of 𝑝 ≤ 0.05 was considered significant
and all statistical tests were two-tailed.

3. Results

3.1. Patient characteristics and invasive results

Six coronary arteries, taken from five different patients were in-
cluded. One patient (20%) was male, mean age was 50 (±8) years
and mean BMI was 26 (±4). The six arteries comprised four left an-
terior descending artery’s (LAD’s), one left circumflex (LCx) and one
right coronary artery (RCA). The mean invasively measured hyper-
aemic flow was 276 (±42) mL/min, while vessel percentage steno-
sis, as assessed by an experienced interventional cardiologist in two
angiographic projections, was ≤5% for all cases examined see (Table 1)
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Fig. 2. A schematic of the workflow: Arteries were reconstructed in 3D using angiograms and epipolar geometry. The 3D reconstruction was reduced to 1D by extracting centre-line
distance 𝑥, and radius 𝑟(𝑥). The result was then down-sampled onto a regular 1D mesh with 200 points. These data were then low-pass filtered, by truncating a Fourier series
decomposition, to remove small wavelength fluctuations in which 𝑑𝑟

𝑑𝑥
> 0. These 1D geometries were then subject to various parameterisation and inlet flow modulation to create

synthetically stenosed arteries which are passed to the models under investigation.

Table 1
Summary of vessel characteristics used to define the healthy arteries used in this study. The vessels summarised here, once filtered, are regarded
as healthy and are ‘perturbed’ with stenosed section, as described in Section 2.4.

Case Vessel 𝑄0 (mL/min) 𝑝0 (mmHg) Visual stenosis Inlet 𝜙 (mm) Outlet 𝜙 (mm) Length (mm)

1 LCx 332 113 5% 4.21 3.03 44.4
2 RCA 242 102 0% 3.45 3.10 55.9
3 LAD 278 90 0% 2.87 1.19 60.0
4 LAD 333 83 0% 2.52 1.44 43.8
5 LAD 234 81 0% 2.98 1.37 40.9
6 LAD 239 100 0% 3.42 2.22 47.6

3.2. Case exclusions

For the conductivity model, out of 486 attempts there were deemed
to be 325 (66.9%) successful simulations. In all cases, exclusions were
attributed to failure of the algorithm used to modulate inlet flow
and not instability in the ODE solver. This resulted from excessive

imbalance between disease burden and inlet flow in the non-diseased
state. Accordingly, simulation failure was associated with increasing
percentage stenosis (chi-square 43,69, 𝑝 < 0.0001). When using a
Murray’s exponent of 3.0, 307 (63.2%) attempted simulations were
successful, which did not significantly differ when using an exponent
of 7/3 (chi square 1.64, 𝑝 = 0.201).
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Fig. 3. Comparison of conductivity and reference anatomical model operation on equivalent synthetic stenoses, across all six arteries. Arteries’ data are colour coded (see figure
legend). Panels A, B and C depict Passing and Bablok regression for vFFR, distal flow (Qd) and coronary micro-vascular resistance (CMVR) respectively. The identity line is given
in black with the regression line in red with corresponding confidence limits depicted by the grey shaded regions. Panels D, E and F show Bland Altman plots with median overall
bias (dashed blue line) and 95% CI (solid black line).

3.3. Conductive vs. Reference anatomical

For the conductivity and reference anatomical functions, as seen
in Fig. 3, paired data was available for 325 simulations. From this,
median vFFR was 0.92 [0.86–0.96] using the conductivity function and
0.90 [0.81–0.95] using the reference anatomical function. Correlation
between the two functions was statistically significant (r = 0.895,
𝑝 < 0.0001). Passing and Bablok regression identified constant and
proportional differences between techniques (m = 1.27, 95% CI 1.10 to
1.31; c = −0.26, 95% −0.11 to −0.30], in Fig. 3A and D. Relative to the
reference anatomical function, the conductivity function overestimated
vFFR by +0.02 (95% CI 0.00 to +0.22). Agreement was inversely
correlated with vFFR (r = −0.471, 𝑝 < 0.0001). Intended management
(i.e., vFFR ≤ 0.80) between conductivity and reference anatomical
changed in 38 (11.7%) cases, of which all reclassified as physiologically
non-significant with the conductivity function.

As seen in Fig. 3B and E, Median Qd was 90.4 [50.1–135.9 mL/min]
using the conductivity function and 102.9 [63.8–138.8 mL/min] us-
ing the reference anatomical function. Correlation between the two
functions was significant (r = 0.959, 𝑝 < 0.0001). Passing and Bablok
regression identified constant and proportional differences between
techniques (m = 0.89, 95% CI 0.86 to 0.93; c = 17.8, 95% 13.9 to
21.3). Relative to the reference anatomical function, the conductivity
function underestimated Qd by −5.2 (95% CI −52.2 to +13.0 mL/min).
Correlation between Qd agreement with vFFR was significant (r =

−0.526, p < 0.0001)(indicating better agreement between conductivity
and reference Anatomical Qd in cases with less severe stenoses).

In Fig. 3C and F, Median CMVR was 959 [722–1604 WU] using
the conductivity function and 730 [698–1142 WU] using the reference
anatomical function. Correlation between the two functions was signif-
icant (r = 0.624, 𝑝 < 0.0001). Passing and Bablok regression identified
constant and proportional differences between techniques (m = 0.58,
95% CI 0.03 to 0.60; c = 277, 95% CI 258 to 702). Relative to the
reference anatomical function, the conductivity function overestimated
CMVR by +50 (95% confidence interval −325 to +2549 WU).

3.4. Modified anatomical vs. Reference anatomical

For the modified and reference anatomical models, as seen in Fig. 4,
paired data was available for 438 simulations. From this, median vFFR
was 0.87 [0.75–0.94] using the modified anatomical function and 0.86
[0.74–0.93] using the reference anatomical function. In Fig. 4A and
D, correlation between the two functions was significant (r = 0.997,
𝑝 < 0.0001), as expected. Passing and Bablok regression identified con-
stant, but not proportional differences between techniques (m = 1.005,
95% CI 0.9997 to 1.011; c = −0.01, 95% CI −0.0056 to −0.0155].
Relative to the reference anatomical function, the modified anatomical
function overestimated vFFR by +0.01 (95% confidence interval 0.00 to
+0.04). Intended management (i.e., vFFR ≤ 0.80) between modified and
reference anatomical changed in ten (2.3%) cases, of which all reclas-
sified as physiologically non-significant with the modified anatomical
function.

Fig. 4B and E display the median Qd was 78.6 [39.9–133.7 mL/min]
using the conductivity function and 78.6 [39.9–133.7 mL/min] us-
ing the reference anatomical function. Correlation between the two
functions was significant (r = 1, 𝑝 < 0.0001). Passing and Bablok
regression did not identify constant or proportional differences between
techniques (m = 1.00, 95% CI 1.00 to 1.00; c = 0.00, 95% CI 0.00
to 0.00. There was zero overall bias between modified and reference
anatomical functions (95% CI 0.0 to 0.0 mL/min).

Median CMVR, shown in Fig. 4C and F was 1084 [705–1819 WU]
using the modified anatomical function and 1057 [702–1802 WU]
using the reference anatomical function. Correlation between the two
functions was significant (r = 0.999, 𝑝 < 0.0001). Passing and Bablok
regression identified proportional, but not constant, differences be-
tween techniques (m = 0.975, 95% CI 0.973 to 0.998; c = 19.0,
95% CI −5.0 to 16.0). Relative to the reference anatomical function,
the modified anatomical function overestimated CMVR by +8 (95%
confidence interval +1 to +84 WU).

3.5. Effect of Murray exponent

To provide insight into the significance of Murray’s exponent for
quantifying virtual physiology, vFFR (Fig. 5A and D), Qd (Fig. 5B and
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Fig. 4. Comparison of the modified and reference anatomical model operation on equivalent synthetic stenoses, across all six arteries. Panels A, B and C depict Passing and
Bablok regression for vFFR, distal flow (Qd) and coronary micro-vascular resistance (CMVR) respectively. The identity line is given in black with the regression line in red with
corresponding confidence limits depicted by the grey shaded regions. Panels D, E and F show Bland Altman plots with median overall bias (dashed blue line) and 95% CI (solid
black line).

E) and CMVR (Fig. 5C and F) were computed using exponents of 7/3
and 3.0 with the conductivity model, results are presented in Fig. 5.
Paired data were available for 303 simulations. From this, median
vFFR was 0.92 [0.87–0.96] using an exponent of 7/3 and 0.94 [0.89–
0.96] using an exponent of 3.0. Correlation between these results was
significant (r = 0.994, 𝑝 < 0.0001). Passing and Bablok regression
did not identify constant or proportional differences between exponent
used (m = 0.90, 95% CI 0.89 to 1.14; c = 0.107, 95% CI - 0.118 to
0.111). Relative to using an exponent of 7/3, using Murray’s exponent
of 3.0 overestimated vFFR by +0.01 (95% confidence interval 0.00 to
+0.04).

Median Qd was 96.5 [57.4–136.6 mL/min] when using an exponent
of 7/3 and 84.5 [46.0–121.8 mL/min] when using an exponent of 3.0.
Correlation between exponents of 7/3 and 3.0 with the conductivity
function was significant (r = 0.993, 𝑝 < 0.0001). Passing and Bablok
regression identified constant and proportional differences between
exponent used (m = 0.940, 95% CI 0.927 to 0.974; c = −8.87, 95% CI
−11.37 to −7.81). Relative to using an exponent of 7/3, using Murray’s
exponent of 3.0 underestimated Qd by −13.3 (95% confidence interval
−27.5 to −6.2 mL/min).

Median CMVR was 893 [719–1412 WU] when using an exponent
of 7/3 and 1100 [801–1845 WU] when using an exponent of 3.0. Cor-
relation between using exponents of 7/3 and 3.0 with the conductivity
function was significant (r = 0.970, 𝑝 < 0.0001). Passing and Bablok
regression identified constant and proportional differences between
exponent used (m = 1.522, 95% CI 1.496 to 1.589; c = −280, −339 to
−254). Relative to using an exponent of 7/3, using Murray’s exponent
of 3.0 overestimated CMVR by +195 (95% confidence interval +46 to
+1821 WU).

4. Discussion

We have described a novel, wall conductivity-dependent porous
wall method that is responsive to both local anatomy and stenosis-
induced localised pressure perturbations in its distribution of coronary
side branch flow. In-vivo validation of such a technique is challeng-
ing as no invasive method to measure and regionalise Q throughout

epicardial coronary arteries exists. Therefore, our analysis compared
the novel technique with established computational models of coronary
physiology that are sensitive only to local anatomy. Specifically, the
technique was successfully used to quantify vFFR, Qd and CMVR in 325
idealised 1D models of coronary arteries, adapted from invasive clinical
data. The new conductivity function correlated with the established
reference anatomical function for vFFR, Qd, and CMVR, with biases
of +0.02, −5 mL/min and +50 WU respectively. Agreement between
techniques was strongest for vFFR and weaker for Q and CMVR. This
is reassuring; prior 1D models of vFFR have strong agreement with
invasive results, whereas models of absolute Q and CMVR are likely to
display larger variation versus invasive surrogates. The novel technique
may therefore represent a refinement of current techniques for simu-
lating side branch flow, whilst still preserving the known diagnostic
accuracy for vFFR.

4.1. Current techniques for quantifying translesional physiology

The superiority of translesional pressure indices over standard coro-
nary angiography is well established [33,34]. However, the added time,
cost and risk of procedural complication of invasive FFR assessment
frequently limits uptake in routine clinical practice [35]. The past
decade has seen advancements in modalities for computing vFFR both
outside and inside the cardiac catheterisation laboratory. The first vFFR
techniques invoked a SL model that neglected side branch flow [6,21].
Newer SL techniques quantified side branch flow from vessel taper [19]
and can now regionalise this to the location of bifurcations [20]. There
has also been an increase in the use of machine learning techniques to
calculate vFFR [32]. Numerous CFD workflows utilising TT models to
compute vFFR have also been described. These reconstruct geometries
from both CT [5] and planar angiography [8–14] and have a range
of clinical uses from pre-procedural planning to informing real-time
decision making within the cardiac catheterisation laboratory. Despite
these differences, all current vFFR techniques that incorporate side-
branch losses invoke an anatomical approach that is not sensitive to
local pressure perturbations within coronary arteries.
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Fig. 5. Comparison of Murray’s exponents 7/3 and 3.0 computed using the operation of the conductivity model. Panels A, B and C depict Passing and Bablok regression for vFFR,
distal flow (Qd) and coronary micro-vascular resistance (CMVR) respectively. The identity line is given in black with the regression line in red with corresponding confidence
limits depicted by the grey shaded regions. Panels D, E and F show Bland Altman plots with median overall bias (dashed blue line) and 95% CI (solid black line).

4.2. Current techniques for quantifying ‘complete’ coronary physiology

Despite the utility of translesional pressure indices, they may only
quantify percentage reduction in coronary flow and give no assessment
of microvasculature. As a subject of ongoing research [22], the impor-
tance of these limitations is emerging; both European and American
guidelines now recommend assessment of CMVR in supporting a di-
agnosis of coronary microvascular disease [36,37]. However, while as-
sessment of the microvasculature may be achieved with proxy measures
of absolute coronary flow such as Doppler or bolus thermodilution,
agreement between these techniques is sub-optimal even in expert
hands (𝑅2 = 0.19; 𝑝 < 0.0001) [38]. Alternative techniques for quan-
tifying absolute CMVR alongside absolute coronary flow (mL/min) and
coronary flow reserve (CFR) are now available. The continuous infusion
Rayflow™ catheter [23,25] is an invasive technique that is currently
used clinically in a small number of tertiary centres. A computational
alternative exists [15], which has been previously used to demonstrate
sex differences in CMVR [39]. This uses full 3D-CFD simulations and
may regionalise absolute flow throughout the coronary artery by in-
voking an anatomically-informed side-branch leakage function, similar
to the reference anatomical approach [20].

4.3. Comparison of conductivity and reference anatomical functions

In the present study, we quantified vFFR, Qd and CMVR, comparing
this with an established 1D model of coronary flow. The conductivity
function overestimated vFFR by +0.02 (95% CI 0.00 to +0.22), with
lower agreement observed at lower vFFR values. This close agreement
is reassuring; the reference anatomical approach has itself been shown
to have close agreement with invasive FFR (mean bias +0.07, 95%
CI −0.20 to +0.29) [19], suggesting minimal additional bias may
exist between invasive FFR and vFFR calculated with the conductivity
function. Relative to the reference anatomical function, overall diag-
nostic accuracy (ability to discriminate FFR ≤ 0.80) of the conductivity
function was 88.3%, with all discordant cases false negatives (n =

38). This result may be explained through consideration of the physics
underpinning the conductivity function:

1. In cases with equivocal or significant stenoses (FFR < 0.85),
there is a significant reduction in inlet flow.

2. As the pressure field proximal to the stenosis is relatively un-
perturbed, the conductivity function leak over this area will
not significantly change relative to the unstenosed case. This
conservation of absolute proximal leak can result in a lower
absolute flow reaching the stenosed section.

3. As leak in the reference anatomical case is dependent only
on local vessel taper, a lower inlet flow results in lower leak
proximal to the stenosis. This results in a relatively higher flow
reaching the stenosed section.

4. The lower flow reaching the stenosis (which approximates a
Bernoulli resistor) for the conductivity function results in a lower
pressure drop across the stenosis.

5. As pressure drop across the stenosis is the major contributor to
vFFR, this results in higher vFFR values with the conductivity,
function relative to the reference anatomical technique.

Nevertheless, as sensitivity of the reference anatomical function relative
to vFFR is 46% (i.e., the number of hemodynamically significant cases
is underestimated), this suggests sensitivity of the conductivity function
may also be low when compared with invasive FFR. This difference
between conductivity and reference anatomical models versus invasive
FFR suggests a systematic error, likely introduced at the stenosed
model of flow, which is represented as Bernoulli resistor. This feature
of the conductivity model is unique in that it is defined purely by
empirically derived parameters and not patient-specific values [27].
As these empirical values were derived from analysis of vessels within
the cerebrovasculature, in which compliance is more influential, it is
possible they do not best represent those which characterise a stenosed
coronary artery. If so, it is likely new parameters, more specific to
diseased epicardial coronary arteries will yield better agreement with
invasive results.

The conductivity function led to an underestimation of Qd by −5.2
(95% CI −52.2 to +13.0 mL/min), with greater discordance between
conductivity and reference anatomical models observed in cases with
more severe stenoses. Again, the lower distal flows observed with the
reference anatomical function are likely to result from the compara-
tively smaller vFFR values, as inlet flow is identical for both functions,
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this dictates greater side branch losses in order to effect the larger
proportional difference between inlet and outlet flow. With no prior
validation of Qd results derived using the reference anatomical function
versus other quantification techniques, it is difficult to comment on
which technique may provide more accurate results. The lower corre-
lation and agreement for CMVR is to be expected; the result is derived
from both vFFR and Qd, which themselves are subject to variation
between conductivity and reference anatomical functions.

4.4. Comparison of the modified and reference anatomical functions

The agreement between modified and reference anatomical func-
tions was closer for vFFR and CMVR and matched exactly for Qd.
Subtle differences in vFFR, and therefore CMVR, may be attributed
to differential handling of the inertia terms between the two mod-
els. Specifically, the flow-diameter (Murray) scaling exponent exerts
greater influence on the modified anatomical function, resulting in
differences between Eqs. (2) and (4). While agreement between the two
anatomical functions was closer than observed with the conductivity
function, management still changed in ten (2%) cases. Of these cases,
all were reclassified as haemodynamically significant, according to
the modified anatomical function. Given vFFR is the output of these
mathematical models with the most immediate and widespread appli-
cability, identification of a further 2% of patients who may benefit from
treatment could represent a further, clinically significant refinement of
the technique. Contrastingly to vFFR and CMVR, Qd matched exactly
between the two anatomical functions. This is because flow was derived
from a surrogate continuity equation, which gives flow solely in terms
of the vessel geometry and Murray’s exponent (see Eq. (A.7)). As
neither of these input parameters differed between the two anatom-
ical functions, perfect agreement was expected. These differences in
agreement between the two models, therefore, represent an element of
decoupling between pressure and flow calculation in the mathematical
models. Consequently, subtle variations in methodology, such as our
differential handling of inertia terms, may produce results in which the
translesional pressure ratio is not exactly equivalent to the proportional
reduction in flow:

𝑄𝑑

𝑄𝑜
≈
𝑃𝑑

𝑃𝑎

While an assumption of equivalence is made in the assessment of
invasive FFR, this does not hold strictly true for the computational
model.

4.5. Effect of Murray’s exponent

Findings for the effect of Murray’s law are twofold. Firstly, the effect
of varying the exponent between 7/3 and 3.0 on conductivity-derived
vFFR was modest, resulting in discordant classification of clinical sig-
nificance in only eight (2.6%) cases. This result is in agreement with
Gosling et al. who suggested Murray’s exponent and the inclusion
of side branch flow had minimal impact on vFFR [19]. Secondly, in
our derivation of the modified anatomical function, we described a
new handling of inertia terms that was sensitive to the Murray flow-
diameter scaling exponent. The effect of this inclusion was comparable
to that observed when varying Murray’s exponent between 7/3 and 3.0.

The impact of varying Murray’s exponent on Qd and CMVR was
more pronounced: a Murray’s exponent of 7/3 resulted in universally
higher Qd, an effect that was more profound with increasing flow rates.
This had knock-on effects for CMVR, which was consistently lower
when derived with an exponent of 7/3. These results, therefore, suggest
that the importance of Murray’s exponent is more significant when
computing ‘complete’ coronary physiology.

4.6. Limitations

Accuracy of the technique is dependent upon faithful reconstruction
of patient anatomy, assumptions about imposed boundary conditions
and necessitates the reconstruction inlet and outlet are placed in sec-
tions of healthy vessel. A disproportionate number of LAD base cases
were included, but this is not abnormal of computational studies. Fail-
ure rate of the conductivity function was higher than both anatomical
functions. This was particularly true for more stenosed and tapered
cases and may reduce ability of the technique to be deployed across
the broad range of epicardial vessels and stenoses that may be en-
countered in routine clinical practice. However, with further work,
the failure rate of simulations could be reduced. The conductivity
function assumes approximately equal distribution of disease in the
side branches proximal and distal to a stenosis and effects of vascular
remodelling are negligible compared to the timescale of atherogenesis.
Several theoretical derivations [16,17] and in-vivo measurements [40–
42] of Murray’s exponent exist for epicardial coronary arteries, with
no current consensus value. A more robust method of modulating the
inlet flow should clearly encompass a model of adaptating CMVR, in
response to reduced perfusion, which is reserved for future work. The
patient cohort who may benefit from virtual coronary physiology and
treatment thresholds are uncertain and subject to ongoing research [22,
43].

4.7. Future work

As the conductivity function was only directly compared with prior
computational techniques, a validation study against invasive clinical
data is warranted and already in progress. However, the use of invasive
imaging and corresponding physiological data retained as much clinical
relevance as possible for an in-silico dataset. Validation studies of Qd
and CMVR are complicated by the relative lack of invasive clinical
measurement tools and absence of any technique for regionalising
flow along the coronary artery. Future validation studies will need
to carefully address this issue. In addition to validation studies, an
extensive global sensitivity analysis is needed to understand inherent
uncertainties within the model [44,45]. This would improve under-
standing of the effects of manipulating input parameters and therefore
facilitate model development.

5. Conclusion

The accuracy of vFFR and other virtually-derived indices of coro-
nary flow are dependent upon the precision with which in-vivo flow
can be reproduced. In this study, we devised and evaluated a novel
conductivity function, in which coronary side branch losses are sen-
sitive to local perturbations in pressure. The technique was deployed
in 325 idealised coronary geometries, adapted from invasive clinical
data. Agreement of vFFR with an established 1D model of coronary flow
was strong, with greater differences observed in more stenosed arteries.
Further validation work is required, but this technique may represent
a refinement in our ability to model local blood flow dynamics while
preserving diagnostic accuracy.
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Appendix A. Derivation of models

We will advance three steady-state descriptions of artery flow based
upon a 1D description. All three will rely upon an appropriate de-
scription of the geometry of the luminal boundary. Our three cases are
distinguished by the way in which they account for a sequestration flux.

A.1. Formulation of artery flow in 1D

The 1D formulation of artery flow involves integrating the in-
compressible Navier–Stokes and continuity equations over an arterial
section under the assumption

𝑣𝑟(𝑟, 𝑥)

𝑣𝑧(𝑟, 𝑥)
≃
𝑅

𝐿

with 𝑅 and 𝐿 the stream-wise, 𝑥 and transverse 𝑟, co-ordinate length-
scales, respectively. In general, pressure 𝑝(𝑥, 𝑡), flow 𝑄(𝑥, 𝑡) and artery
cross-section 𝐴(𝑥, 𝑡) are all dependant upon time, 𝑡 and stream-wise
co-ordinate 𝑥. With these variables, the equations of mass and the
momentum conservation may be written [46]

𝜕𝑄

𝜕𝑥
= −

𝜕𝐴

𝜕𝑡
(A.1)

𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥

(
𝑄2

𝐴

)
= −

𝐴

𝜌

𝜕𝑝

𝜕𝑥
−

2(𝜁 + 2)𝜋𝜇

𝜌

𝑄

𝐴

Typically, the system is closed by some experimental or theoretical tube
law [47,48], which is a constitutive relation for the material which
makes up the luminal boundary, and boundary conditions (see below).
Such a formulation does not account for sequestration flow or vessel
leak. Here, we further assume that quantities are steady 𝜓(𝑥, 𝑡) → 𝜓(𝑥),
that 𝐴(𝑥) is a known function of centre-line distance 𝑥, and that inlet
(𝑥 = 0) boundary conditions on pressure and flow are specified

𝑝(0) = 𝑝0, 𝑄(0) = 𝑄0.

These assumptions eliminate the need for a tube law.

Fig. A.6. Schematic representation of the mathematical description of the artery. (1)
A section of part of the artery, described by the function 𝑟(𝑥). Each element of the
artery is assumed to be an axi-symmetric conical frustum. The 𝑖th element extends
over the stream-wise co-ordinate interval 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1 (2) The 𝑖th element (shaded in
(1)) shown in 3D, with the inlet, outlet and sequestration fluxes shown.

A.2. Anatomy description

We consider a set of six representative coronary arteries. All were
clinically assessed as healthy. These were derived from stereoscopic
coronary angiography, using epipolar geometry. In addition to artery
geometry, patients’ proximal inlet flow and (aortic) pressure were mea-
sured, using Rayflow™ catheterisation and a pressure wire. These ge-
ometries have been low-pass Fourier filtered, to remove minor stenoses,
by ensuring radius is monotonically decaying function of stream-wise
co-ordinate, 𝑥. (This was simply achieved by truncating a complex ex-
ponential Fourier series decomposition truncated at 6 terms). Proximal
pressure and flow boundary conditions are those measured.

Let us first parameterise a 1D model of such and artery. Fig. A.6
shows schematic. All arteries treated in this work may be described as
set-out here. We choose to represent each compartment of the artery
as a truncated conic frustum. The 𝑖th segment, or solid, corresponds to
𝑥 ∶ 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1. Each solid is of course axi-symmetric. The luminal
radius variation within the 𝑖th solid is described as follows

𝑟(𝑥) = 𝑟𝑖 + 𝑚𝑖(𝑥 − 𝑥𝑖), 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1, 𝑖 = 1,… , 𝑁

The vessel is defined by a set of radius samples {(𝑥𝑖, 𝑟𝑖), 𝑖 = 1,… , 𝑁}.
In health, radius is a monotonically decaying function of vessel length

𝑟𝑖 ≥ 𝑟𝑖+1, 𝑖 = 1,… , (𝑁 − 1), 𝑚𝑖 < 0.

A.3. Anatomical leak description

We formulate a model of wall sequestration flux, or vessel leak
based upon anatomy (i.e. the local taper of the artery) and Murray’s
law [16]. The value of Murray’s law exponent is contested and we will
denote its value by 𝑝, note. Recall, we consider the steady-state case,
when artery flow 𝑄, and area 𝐴 depend solely on the distance along
the artery, 𝑥.

The sequestration flux across the boundary of a length element of
the artery, at position 𝑥, is denoted 𝛿𝑄𝑠(𝑥). See Fig. A.6. Therefore, the
cumulative sequestration flux, over all length elements proximal to 𝑥 is
given by

𝑄𝑠(𝑥) = ∫
𝑥

0

𝑑𝑄𝑠(𝑢)𝑑𝑢

Conservation of mass may now be expressed as follows

𝑄(𝑥) +𝑄𝑠(𝑥) = 𝑄0,

and differentiating with respect to x, it follows

𝑑𝑄

𝑑𝑥
= −

𝑑𝑄𝑠

𝑑𝑥
.
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Now, taper in any vessel section is taken to imply the existence of
an unresolved branch vessel. We model the resolved, luminal, boundary
as a right circular conical frustum with height 𝛿𝑥 and base location 𝑥.
Applying Murray’s law to this system, we have

𝑄(𝑥 + 𝛿𝑥) = 𝑄(𝑥)

(
𝐴(𝑥 + 𝛿𝑥)

𝐴(𝑥)

) 𝑐

2

where 𝑐 is the Murray exponent. Expanding about 𝑥, using first order
binomial expansions and cancelling terms

𝑑𝑄

𝑑𝑥
= 𝑄(𝑥)

𝑐

2

1

𝐴(𝑥)

𝑑𝐴

𝑑𝑥
,

where all derivatives are evaluated at 𝑥. We note that the above is
a continuity equation for a one-dimensional system in which there is
sequestration. Separating variables and using properties of logarithms
it is straightforward to show

𝑑

𝑑𝑥
log(𝑄(𝑥)) =

𝑑

𝑑𝑥
log(𝐴(𝑥))

𝑐

2 .

Integrate over 𝑥 ∈ [0, 𝑋 < 𝐿] to yield log
(
𝑄(𝑋)

𝑄(0)

)
= log

(
𝐴(𝑋)

𝐴(0)

) 𝑐

2 , then

𝑋 → 𝑥 to find the following algebraic relationship between 𝑄(𝑥) and
𝐴(𝑥)

𝑄(𝑥) = 𝑄(0)

(
𝐴(𝑥)

𝐴0

) 𝑐

2

. (A.2)

The corresponding cumulative sequestration flow up to the inlet of the
𝑖th conical frustum element is then

𝑄𝑠(𝑥) =

(
1 −

(
𝐴(𝑥)

𝐴0

) 𝑐

2

)
𝑄(0). (A.3)

We note that, for an anatomically-based leak model, both 𝑄(𝑥) and
𝑄𝑠(𝑥) are fully determined by the inlet flow and are independent of the
‘history’ of the vessel proximal to 𝑥. Further, 𝑄𝑠(𝑥) is synonymous with
vessel taper (where a vessel does not taper, flow is conserved and there
is no sequestration).

A.4. No sequestration flow

The problem we seek numerically to solve for mono-variate func-
tions 𝑝(𝑥), 𝑞(𝑥) is obtained by simplifying Eqs. (A.1), to produce a
system of two coupled ODEs

𝑑𝑄

𝑑𝑥
= 0 (A.4)

𝑑

𝑑𝑥

(
𝑄2

𝐴

)
= −

𝐴

𝜌

𝑑𝑝

𝑑𝑥
−

2(𝜁 + 2)𝜋𝜇

𝜌

𝑄

𝐴

𝑝(0) = 𝑝0, 𝑄(0) = 𝑄0.

We proceed by eliminating variables. Integrate the first equation and
fix flow to its inlet value 𝑄 = 𝑄0, a constant. Then, in the Navier–Stokes
equation, perform the differentiation in left hand side and re-arrange

𝑄2
0

𝐴3

𝑑𝐴

𝑑𝑥
=

1

𝜌

𝑑𝑝

𝑑𝑥
+

2(𝜁 + 2)𝜋𝜇

𝜌

𝑄0

𝐴2
.

Integrating on 𝑥, over a range of stream-wise co-ordinate which corre-
sponds to one conical frustum 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1

𝑄2
0

[
𝐴−2

−2

]𝑥𝑖+1

𝑥𝑖

=
1

𝜌
[𝑝]

𝑥𝑖+1
𝑥𝑖

+
2(𝜁 + 2)𝜋𝜇𝑄0

𝜌 ∫
𝑥𝑖+1

𝑥𝑖

𝐴−2𝑑𝑥.

Processing the limits and making 𝑝(𝑥𝑖+1) subject we straightforwardly
obtain

𝑝(𝑥𝑖+1) = 𝑝(𝑥𝑖) +
𝜌𝑄2

0

2𝐴2
𝑖

−
𝜌𝑄2

0

2𝐴2
𝑖+1

− 2(𝜁 + 2)𝜋𝜇𝑄0 ∫
𝑥𝑖+1

𝑥𝑖

𝐴(𝑥)−2𝑑𝑥, (A.5)

in agreement with Fossan et al. [21,26]. The integral might be evalu-
ated using a suitable quadrature. The above result is further adapted in
the next section.

A.5. Reference and modified anatomical models : anatomical sequestration
flow

An approach to leak was validated by Gosling et al. [19], who

devised a modified form of Eq. (A.5)

𝑝(𝑥𝑖+1) = 𝑝(𝑥𝑖) +
𝜌𝑄2

𝑖

2𝐴2
𝑖

−
𝜌𝑄2

𝑖+1

2𝐴2
𝑖+1

− 2(𝜁 + 2)𝜋𝜇 ∫
𝑥𝑖+1

𝑥𝑖

𝑄(𝑥)𝐴(𝑥)−2𝑑𝑥. (A.6)

Gosling et al. account for leak by using the first of Eqs. (A.7) to

determine 𝑄𝑖 and 𝑄𝑖+1. Owing to its validated status, this approach to

calculating pressure is taken as our gold standard, reference anatomical

model.

When vessel flow is known (from Eq. (A.2)), the continuity equation

(which now acquires an effective source, note) may be replaced in

Eqs. (A.1) to yield a system of two differential algebraic equations for

pressure and flow

𝑄 = 𝑄0

(
𝐴

𝐴0

)𝑐∕2

(A.7)

𝑑

𝑑𝑥

(
𝑄2

𝐴

)
= −

𝐴

𝜌

𝑑𝑝

𝑑𝑥
−

2(𝜁 + 2)𝜋𝜇

𝜌

𝑄

𝐴

𝑝(0) = 𝑝0, 𝑄(0) = 𝑄0.

We reserve for future work a consideration of the effect of the conti-

nuity source in the momentum equation, which, note, is not modified

here. Eliminating 𝑄 and re-arranging we obtain the Navier–Stokes

equation as follows

𝑄2
0

𝐴
𝑝

0

(𝑐 − 1)𝐴𝑐−3
𝑑𝐴

𝑑𝑥
= −

1

𝜌

𝑑𝑝

𝑑𝑥
−

2(𝜁 + 2)𝜋𝜇

𝜌𝐴

𝑐

2

1

𝑄0𝐴
𝑐

2
−2

Above 𝑐 is the given Murrays exponent. Integrating on a range of 𝑥

corresponding to one conical frustum, or solid, 𝑥 ∶ 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1,

processing the limits and re-arranging

𝜌𝑄2
0

𝐴𝑐
0

(𝑐 − 1)

(𝑐 − 2)

(
𝐴𝑐−2
𝑖+1

− 𝐴𝑐−2
𝑖

)
= −𝑝(𝑥𝑖+1) + 𝑝(𝑥𝑖)

−
2(𝜁 + 2)𝜋𝜇

𝐴

𝑐

2

0

𝑄0 ∫
𝑥𝑖+1

𝑥1

𝐴
𝑐

2
−2
𝑑𝑥 (A.8)

Above, the left hand side represents inertia, the last term on the right

hand side viscosity. Transposing the inertia and pressure terms

𝑝(𝑥𝑖+1) = 𝑝(𝑥𝑖)+
𝜌𝑄2

0

𝐴
𝑝

0

(𝑐 − 1)

(𝑐 − 2)

(
𝐴𝑐−2
𝑖

− 𝐴𝑐−2
𝑖+1

)
−
2(𝜁 + 2)𝜋𝜇

𝐴

𝑐

2

0

𝑄0 ∫
𝑥𝑖+1

𝑥1

𝐴
𝑐

2
−2
𝑑𝑥

(A.9)

In health 𝐴𝑖 ≥ 𝐴𝑖+1. Since all estimates place 𝑐 > 2.33, the inertia

term in the above is positive, as is the integral. Hence, the sign of

the pressure drop is dictated by the balance between the inertia and

viscous terms. For a negative pressure change (drop), viscous loss

must dominate. To establish the most transparent correspondence with

Gosling et al. [19], we take Eq. (A.9) and re-write the inertia terms.

For the 𝑛th conic frustum
𝑄2
0

𝐴𝑐
0

𝐴𝑐−2
𝑛

=
𝑄2
0

𝐴𝑐
0

𝐴𝑐𝑛

𝐴2
𝑛

=
(
𝑄2

0

𝐴𝑛

𝐴1

)𝑐
1

𝐴2
𝑛

=
𝑄2
𝑛

𝐴2
𝑛

, ∀𝑛.

Now the Navier–Stokes equation’s inertia terms can be re-cast. Making

𝑝(𝑥𝑖+1) subject we obtain our modified anatomical model

𝑝(𝑥𝑖+1) = 𝑝(𝑥𝑖) + 𝜌
(
𝑐 − 1

𝑐 − 2

) 𝑄2
𝑖

𝐴2
𝑖

− 𝜌
(
𝑐 − 1

𝑐 − 2

) 𝑄2
𝑖+1

𝐴2
𝑖+1

−
2(𝜁 + 2)𝜋𝜇𝑄0

𝐴

𝑐

2

1

∫
𝑥𝑖+1

𝑥1

𝐴
𝑐

2
−2
𝑑𝑥 (A.10)



Computers in Biology and Medicine 173 (2024) 108299

12

D.J. Taylor et al.

A.6. Conductivity model : physiological leak

We derive a model of a radial sequestration flux, 𝑄𝑠(𝑥), based upon
an assumption that artery walls behave as porous layers. The seques-
tration flux (units of m s−1 i.e. volume per unit area of luminal surface,
per unit time) is driven by the transmural pressure in accord with
Darcy’s law, blood viscosity and the porous layer effective permeability,
𝛼(𝑥) [29]. For a conical frustum of height 𝛿𝑥 the increment in 𝑄𝑠(𝑥) is,
to first order

𝑑𝑄𝑠(𝑥) = −
𝛼(𝑥) {2𝜋𝑟(𝑥)𝑑𝑥}

𝜇

(
𝑝(𝑥) − 𝑝0

𝑡

)
.

Here, 𝑝0 is cavity pressure, the expression within the braces is the
luminal vessel segment area between locations 𝑥 and 𝑥+𝑑𝑥, 𝑡 is the wall
thickness (which is assumed constant) and 𝛼(𝑥) is the porosity of the
wall material. The sequestration flow will be positive in the direction
of the surface normal vector. This description is of course best suited to
smaller vessels, rather than large branch vessels, in which inertia plays
a significant role. We write this as follows

𝑑𝑄𝑠

𝑑𝑥
= 𝐾(𝑥)𝑝(𝑥), 𝐾(𝑥) =

2𝜋𝑟(𝑥)𝛼(𝑥)

𝜇𝑡
. (A.11)

Aggregate function 𝐾(𝑥) combines both anatomical and physiological
information. It is an effective hydraulic conductivity. To assign it in a
manner consistent with the other models of sequestration, we assign
turn to the anatomical leak model.

Consider a conical frustum with proximal (distal) area 𝐴 (𝑄 + 𝑑𝐴),
then

𝑑𝑄𝑠 = 𝑄(𝐴 + 𝑑𝐴) −𝑄(𝐴).

Recall, for the anatomical leak we have 𝑄(𝑥) = 𝑄0

(
𝐴(𝑥)

𝐴0

) 𝑐

2 . Substituting
this result, we find

𝑑𝑄𝑠

𝑄0

=

(
𝐴 + 𝑑𝐴

𝐴0

) 𝑐

2

−

(
𝐴

𝐴0

) 𝑐

2

.

This is readily re-expressed as follows

𝑑𝑄𝑠

𝑄0

=
1

𝐴

𝑐

2

0

{
𝐴

𝑐

2

(
1 +

𝑑𝐴

𝐴

)
− 𝐴

𝑐

2

}
.

Taking a first order binomial expansion in the right hand side of the
above, this is reduced to the following

𝑑𝑄𝑠 =
𝑐𝑄0

2

(
𝐴

𝐴0

) 𝑐

2 𝑑𝐴

𝐴

Accordingly 𝑑𝑄𝑠

𝑑𝑥
=

𝑐𝑄0

2

(
𝐴

𝐴0

) 𝑐

2 1

𝐴

𝑑𝐴

𝑑𝑥
and hence

𝑑𝑄𝑠

𝑑𝑥
=
𝑐

2

𝑑 log(𝐴)

𝑑𝑥
𝑄(𝑥) (A.12)

Comparing Eqs. (A.11) and (A.12) it is immediate that

𝐾(𝑥) =
𝑐

2

𝑑 log(𝐴(𝑥))

𝑑𝑥

𝑄(𝑥)

𝑝(𝑥)
(A.13)

Given our assumptions regarding the assignment of 𝐾(𝑥) from the
physiological leak model, 𝐾(𝑥) > 0, ∀𝑥.

In summary, an effective hydraulic conductance for the artery wall
material may be assigned by computing the pressure field and flow
fields, using the Eqs. (A.5) and (A.2). The flow and pressure may then
be used in Eq. (A.13) to assign the corresponding wall conductivity.
Assigning 𝐾(𝑥) as described above, the result clearly reflects the side-
branch structure of the vessel, for which taper is a surrogate. One
therefore expects that in regions of larger taper (where one can infer a
greater density of side-branches), leak should be greater and therefore
conductance larger. The pressure and flow used to determine 𝐾(𝑥) were
derived from our reference anatomical model.

Fig. B.7. Patient geometries: The 6 idealised geometries used in this work with radius
plotted against position in the artery. The red line represents the true artery, the black
line is the Fourier filtered line.

A.6.1. Mathematical formulation

The problem of physiological leak is formulated as a coupled ODE
problem, for 𝑝(𝑥) and 𝑄(𝑥). Consider mass conservation in the form
𝑄(𝑥) + 𝑄𝑠(𝑥) = 𝑄0 (recall, 𝑄𝑠(𝑥) is the cumulative sequestration
flux). Differentiating on 𝑥 and using Eq. (A.11), it is immediate that
mass conservation may be expressed with a source as follows 𝑑𝑄

𝑑𝑥
=

−𝐾(𝑥)𝑝(𝑥). A coupled ODE description of physiological leak, for a given
wall hydraulic conductance function 𝐾(𝑥), may now be formulated as
the following pair of non-linear ODEs

𝑑𝑄

𝑑𝑥
= −𝐾(𝑥)𝑝(𝑥) (A.14)

𝑑

𝑑𝑥

(
𝑄2

𝐴

)
= −

𝐴

𝜌

𝑑𝑝

𝑑𝑥
−

2(𝜁 + 2)𝜋𝜇

𝜌

𝑄

𝐴

Above we have again not modified the momentum equation for the
presence of a continuity source. Expanding the left hand side of the
momentum equation, and making the pressure derivative subject, we
can straightforwardly re-arrange the system into the canonical state
space system form

𝑑𝑄

𝑑𝑥
= −𝐾(𝑥)𝑝(𝑥) (A.15)

𝑑𝑝

𝑑𝑥
=

𝜌

𝐴3

𝑑𝐴

𝑑𝑥
𝑄2 −

2𝜌

𝐴2

𝑑𝑄

𝑑𝑥
𝑄 −

2(𝜁 + 2)𝜋𝜇

𝐴2
𝑄

Finally, eliminating the 𝑑𝑄

𝑑𝑥
in the second equation, in favour of the

pressure, using the first, we have the following formulation

𝑑𝑄

𝑑𝑥
= −

𝐾(𝑥)

𝛿𝑥
𝑝(𝑥) (A.16)

𝑑𝑝

𝑑𝑥
=

𝜌

𝐴3

𝑑𝐴

𝑑𝑥
𝑄2 +

2𝜌𝐾(𝑥)

𝐴2
𝑄𝑝(𝑥) −

2(𝜁 + 2)𝜋𝜇

𝐴2
𝑄

The formulation above solved using and explicit Runge–Kutta algo-
rithm, with an effective hydraulic conductance in accord with the vessel
geometry, using Eq. (A.13).

Appendix B. Patient specific geometries

See Fig. B.7.
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