Items where authors include "Szeider, S."

Number of items: 12.

Article

Ordyniak, S. orcid.org/0000-0003-1935-651X, Schidler, A. and Szeider, S. (2024) Backdoor DNFs. Journal of Computer and System Sciences, 144. 103547. ISSN 0022-0000

Dreier, J., Ordyniak, S. orcid.org/0000-0003-1935-651X and Szeider, S. (2024) SAT Backdoors: Depth Beats Size. Journal of Computer and System Sciences, 142. 103520. ISSN 0022-0000

Dreier, J., Ordyniak, S. orcid.org/0000-0003-1935-651X and Szeider, S. (2023) CSP Beyond Tractable Constraint Languages. Constraints, 28 (3). pp. 450-471. ISSN 1383-7133

Lodha, N., Ordyniak, S. orcid.org/0000-0003-1935-651X and Szeider, S. (2019) A SAT approach to branchwidth. ACM Transactions on Computational Logic, 20 (3). 15. ISSN 1529-3785

Gaspers, S., Misra, N., Ordyniak, S. orcid.org/0000-0003-1935-651X et al. (2 more authors) (2017) Backdoors into heterogeneous classes of SAT and CSP. Journal of Computer and System Sciences, 85. pp. 38-56. ISSN 0022-0000

Proceedings Paper

Ordyniak, S. orcid.org/0000-0003-1935-651X, Paesani, G., Rychlicki, M. et al. (1 more author) (2024) Explaining Decisions in ML Models: a Parameterized Complexity Analysis. In: Proceedings of the 21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024). 21st International Conference on Principles of Knowledge Representation and Reasoning (KR 2024), 02-08 Nov 2024, Hanoi, Vietnam. IJCAI Organization , pp. 563-573. ISBN 978-1-956792-05-8

Dabrowski, K.K., Eiben, E., Ordyniak, S. orcid.org/0000-0003-1935-651X et al. (2 more authors) (2024) Learning Small Decision Trees for Data of Low Rank-Width. In: Wooldridge, M., Dy, J. and Natarajan, S., (eds.) Proceedings of the 38th AAAI Conference on Artificial Intelligence. Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24), 20-27 Feb 2024, Vancouver, Canada. AAAI Press , Washington, DC, USA , pp. 10476-10483. ISBN 978-1-57735-887-9

Ordyniak, S. orcid.org/0000-0003-1935-651X, Paesani, G., Rychlicki, M. et al. (1 more author) (2024) A General Theoretical Framework for Learning Smallest Interpretable Models. In: Wooldridge, M., Dy, J. and Natarajan, S., (eds.) Proceedings of the 38th AAAI Conference on Artificial Intelligence. Thirty-Eighth AAAI Conference on Artificial Intelligence, 20-27 Feb 2024, Vancouver, Canada. AAAI Press , Washington, DC, USA , pp. 10662-10669. ISBN 978-1-57735-887-9

Eiben, E., Ganian, R., Kanj, I. et al. (2 more authors) (2023) From Data Completion to Problems on Hypercubes: A Parameterized Analysis of the Independent Set Problem. In: Dagstuhl Reports. 18th International Symposium on Parameterized and Exact Computation (IPEC 2023), 06-08 Sep 2023, Amsterdam, Netherlands. Leibniz International Proceedings in Informatics (LIPIcs), 285 . Schloss Dagstuhl - Leibniz-Zentrum für Informatik , Wadern, Merzig-Wadern, Saarland , 16:1-16:14. ISBN 978-3-95977-305-8

Ganian, R., Ordyniak, S. orcid.org/0000-0003-1935-651X and Szeider, S. (2019) A join-based hybrid parameter for constraint satisfaction. In: Schiex, T. and de Givry, S., (eds.) Principles and Practice of Constraint Programming. 25th International Conference, CP 2019, 30 Sep - 04 Oct 2019, Stamford, CT, USA. Springer , pp. 195-212. ISBN 9783030300470

Ganian, R., Lodha, N., Ordyniak, S. orcid.org/0000-0003-1935-651X et al. (1 more author) (2019) SAT-encodings for treecut width and treedepth. In: Kobourov, S. and Meyerhenke, H., (eds.) 2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX). Twenty-First Workshop on Algorithm Engineering and Experiments (ALENEX), 07-08 Jan 2019, San Diego, California, USA. Society for Industrial and Applied Mathematics , pp. 117-129. ISBN 978-1-61197-549-9

Ganian, R., Kanj, I.A., Ordyniak, S. orcid.org/0000-0003-1935-651X et al. (1 more author) (2018) Parameterized Algorithms for the Matrix Completion Problem. In: Dy, J.G. and Krause, A., (eds.) Proceedings of Machine Learning Research. International Conference on Machine Learning, 10-15 Jul 2018, Stockholmsmässan, Stockholm Sweden. Proceedings of Machine Learning Research , pp. 1642-1651.

This list was generated on Thu Apr 3 06:46:15 2025 BST.