Morris, EA, Hodgson, DM orcid.org/0000-0003-3711-635X, Flint, SS et al. (3 more authors) (2016) Integrating outcrop and subsurface data to assess the temporal evolution of a submarine channel-levee system. AAPG Bulletin, 100 (11). pp. 1663-1691. ISSN 0149-1423
Abstract
The morphological evolution of submarine channel systems can be documented using high-resolution 3D seismic datasets. However, these studies provide limited information on the distribution of sedimentary facies within channel-fills, channel-scale stacking patterns, or the detailed stratigraphic relationship with adjacent levee-overbank deposits. Seismic-scale outcrops of Unit C2 in the Permian Fort Brown Formation, Karoo Basin, South Africa on two subparallel fold limbs comprise thin-bedded successions, interpreted as external levee deposits, which are adjacent to channel complexes, with constituent channels filled with thick-bedded structureless sandstones, thinner-bedded channel margin facies, and internal levee deposits. Research boreholes intersect all these deposits, to link sedimentary facies and channel stacking patterns identified in core and on image logs and detailed outcrop correlation panels. Key characteristics, including depth of erosion, stacking patterns, and cross-cutting relationships, have been constrained, allowing paleogeographic reconstruction of six channel complexes in a 36 km2 (14 mi2) area. The system evolved from an early, deeply incised channel complex, through a series of external levee-confined and laterally stepping channel complexes culminating in an aggradational channel complex confined by both internal and external levees. Down-dip divergence of six channel complexes from the same location suggests the presence of a unique exhumed example of an exhumed deep-water avulsion node. Down-dip, external levees are supplied by flows that escaped from channel complexes of different ages and spatial positions, and are partly confined and share affinities with internal levee successions. The absence of frontal lobes suggests that the channels remained in sand bypass mode immediately after avulsion.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2016. The American Association of Petroleum Geologists. All rights reserved. Green Open Access. This paper is published under the terms of the CC-BY license. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Institute for Applied Geosciences (IAG) (Leeds) |
Funding Information: | Funder Grant number Conoco Phillips Not Known Statoil SLOPE4 Total E&P UK Ltd SLOPE4 BHP Petroleum (Americas) Inc SLOPE4 BP Egypt Company SLOPE4 Maersk Olie og Gas A/S MAERSK |
Depositing User: | Symplectic Publications |
Date Deposited: | 28 Apr 2016 10:57 |
Last Modified: | 05 Oct 2017 16:09 |
Published Version: | https://doi.org/10.1306/04271615056 |
Status: | Published |
Publisher: | American Association of Petroleum Geologists |
Identification Number: | 10.1306/04271615056 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:99116 |