Remmers, J.J.C., De Borst, R., Verhoosel, C.V. et al. (1 more author) (2013) The cohesive band model: A cohesive surface formulation with stress triaxiality. International Journal of Fracture, 181 (2). pp. 177-188. ISSN 0376-9429
Abstract
In the cohesive surface model cohesive tractions are transmitted across a two-dimensional surface, which is embedded in a three-dimensional continuum. The relevant kinematic quantities are the local crack opening displacement and the crack sliding displacement, but there is no kinematic quantity that represents the stretching of the fracture plane. As a consequence, in-plane stresses are absent, and fracture phenomena as splitting cracks in concrete and masonry, or crazing in polymers, which are governed by stress triaxiality, cannot be represented properly. In this paper we extend the cohesive surface model to include in-plane kinematic quantities. Since the full strain tensor is now available, a three-dimensional stress state can be computed in a straightforward manner. The cohesive band model is regarded as a subgrid scale fracture model, which has a small, yet finite thickness at the subgrid scale, but can be considered as having a zero thickness in the discretisation method that is used at the macroscopic scale. The standard cohesive surface formulation is obtained when the cohesive band width goes to zero. In principle, any discretisation method that can capture a discontinuity can be used, but partition-of-unity based finite element methods and isogeometric finite element analysis seem to have an advantage since they can naturally incorporate the continuum mechanics. When using interface finite elements, traction oscillations that can occur prior to the opening of a cohesive crack, persist for the cohesive band model. Example calculations show that Poisson contraction influences the results, since there is a coupling between the crack opening and the in-plane normal strain in the cohesive band. This coupling holds promise for capturing a variety of fracture phenomena, such as delamination buckling and splitting cracks, that are difficult, if not impossible, to describe within a conventional cohesive surface model. © 2013 Springer Science+Business Media Dordrecht.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2013 Springer Netherlands. This is an author produced version of a paper subsequently published in International Journal of Fracture. Uploaded in accordance with the publisher's self-archiving policy. |
Keywords: | Discrete fracture; Discontinuities; Stress triaxiality; Cohesive surface model; Partition of unity method; Interface elements |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Civil and Structural Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 09 Mar 2016 10:21 |
Last Modified: | 21 Mar 2018 06:45 |
Published Version: | http://dx.doi.org/10.1007/s10704-013-9834-3 |
Status: | Published |
Publisher: | Springer Verlag |
Refereed: | Yes |
Identification Number: | 10.1007/s10704-013-9834-3 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:96206 |