Howell, FW, Haywood, AM orcid.org/0000-0001-7008-0534, Dowsett, HJ et al. (1 more author) (2016) Sensitivity of Pliocene Arctic climate to orbital forcing, atmospheric CO2 and sea ice albedo parameterisation. Earth and Planetary Science Letters, 441. pp. 133-142. ISSN 0012-821X
Abstract
General circulation model (GCM) simulations of the mid-Pliocene Warm Period (mPWP, 3.264 to 3.025Myr ago) do not reproduce the magnitude of Northern Hemisphere high latitude surface air and sea surface temperature (SAT and SST) warming that proxy data indicate. There is also large uncertainty regarding the state of sea ice cover in the mPWP. Evidence for both perennial and seasonal mPWP Arctic sea ice is found through analyses of marine sediments, whilst in a multi-model ensemble of mPWP climate simulations, half of the ensemble simulated ice-free summer Arctic conditions. Given the strong influence that sea ice exerts on high latitude temperatures, an understanding of the nature of mPWP Arctic sea ice would be highly beneficial. Using the HadCM3 GCM, this paper explores the impact of various combinations of potential mPWP orbital forcing, atmospheric CO2concentrations and minimum sea ice albedo on sea ice extent and high latitude warming. The focus is on the Northern Hemisphere, due to availability of proxy data, and the large data–model discrepancies in this region. Changes in orbital forcings are demonstrated to be sufficient to alter the Arctic sea ice simulated by HadCM3 from perennial to seasonal. However, this occurs only when atmospheric CO2concentrations exceed 300 ppm. Reduction of the minimum sea ice albedo from 0.5 to 0.2 is also sufficient to simulate seasonal sea ice, with any of the combinations of atmospheric CO2and orbital forcing. Compared to a mPWP control simulation, monthly mean increases north of 60◦N of up to 4.2◦C (SST) and 9.8◦C (SAT) are simulated. With varying CO2, orbit and sea ice albedo values we are able to reproduce proxy temperature records that lean towards modest levels of high latitude warming, but other proxy data showing greater warming remain beyond the reach of our model. This highlights the importance of additional proxy records at high latitudes and ongoing efforts to compare proxy signals between sites.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2016, Elsevier. This is an author produced version of a paper published in Earth and Planetary Science Letters. Uploaded in accordance with the publisher's self-archiving policy. |
Keywords: | Palaeoclimate; Pliocene; climate model; sea ice; orbital variability; CO2 |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Environment (Leeds) > School of Earth and Environment (Leeds) > Inst for Climate & Atmos Science (ICAS) (Leeds) |
Funding Information: | Funder Grant number EU - European Union GA 660814 |
Depositing User: | Symplectic Publications |
Date Deposited: | 24 Mar 2016 11:48 |
Last Modified: | 15 Nov 2018 12:58 |
Published Version: | http://dx.doi.org/10.1016/j.epsl.2016.02.036 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.epsl.2016.02.036 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:95856 |