Kong, Y, Chen, J, Fang, H et al. (8 more authors) (2016) Highly Fluorescent Ribonuclease-A-Encapsulated Lead Sulfide Quantum Dots for Ultrasensitive Fluorescence in Vivo Imaging in the Second Near-Infrared Window. Chemistry of Materials, 28 (9). pp. 3041-3050. ISSN 0897-4756
Abstract
Ribonuclease-A (RNase-A) encapsulated PbS quantum dots (RNase-A@PbS Qdots) which emit in the second near-infrared biological window (NIR-II, ca. 1000–1400 nm) are rapidly synthesized under microwave heating. Photoluminescence (PL) spectra of the Qdots can be tuned across the entire NIR-II range by simply controlling synthesis temperature. The size and morphology of the Qdots are examined by transmission electron microscopy (TEM), atomic force microscopy (AFM), and dynamic light scattering (DLS). Quantum yield (Φf) measurement confirms that the prepared Qdots are one of the brightest water-soluble NIR-II emitters for in vivo imaging. Their high Φf (∼17.3%) and peak emission at ∼1300 nm ensure deep optical penetration to muscle tissues (up to 1.5 cm) and excellent imaging contrast at an extremely low threshold dose of ∼5.2 pmol (∼1 μg) per mouse. Importantly, this protein coated Qdot displays no signs of toxicity toward model neuron, normal, and cancer cells in vitro. In addition, the animal’s metabolism results in thorough elimination of intravenously injected Qdots from the body within several days via the reticuloendothelial system (RES), which minimizes potential long-term toxicity in vivo from possible release of lead content. With a combination of attractive properties of high brightness, robust photostability, and excellent biocompatibility, this new NIR-II emitting Qdot is highly promising in accurate disease screening and diagnostic applications.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2016 American Chemical Society. This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Chemistry (Leeds) > Inorganic Chemistry (Leeds) The University of Leeds > Faculty of Engineering & Physical Sciences (Leeds) > School of Physics and Astronomy (Leeds) > Molecular & Nanoscale Physics |
Funding Information: | Funder Grant number EPSRC EP/F056311/1 Wellcome Trust 097354/Z/11/Z EPSRC EP/J501475/1 Royal Society DC-SIGN/R |
Depositing User: | Symplectic Publications |
Date Deposited: | 29 Apr 2016 14:47 |
Last Modified: | 23 Jun 2023 21:59 |
Published Version: | http://dx.doi.org/10.1021/acs.chemmater.6b00208 |
Status: | Published |
Publisher: | American Chemical Society |
Identification Number: | 10.1021/acs.chemmater.6b00208 |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:95439 |