Wilson, E.D., Assaf, T., Pearson, M.J. et al. (4 more authors) (2015) Biohybrid Control of General Linear Systems Using the Adaptive Filter Model of Cerebellum. Frontiers in Neurorobotics, 9. 5. ISSN 1662-5218
Abstract
The adaptive filter model of the cerebellar microcircuit has been successfully applied to biological motor control problems, such as the vestibulo-ocular reflex (VOR), and to sensory processing problems, such as the adaptive cancelation of reafferent noise. It has also been successfully applied to problems in robotics, such as adaptive camera stabilization and sensor noise cancelation. In previous applications to inverse control problems, the algorithm was applied to the velocity control of a plant dominated by viscous and elastic elements. Naive application of the adaptive filter model to the displacement (as opposed to velocity) control of this plant results in unstable learning and control. To be more generally useful in engineering problems, it is essential to remove this restriction to enable the stable control of plants of any order. We address this problem here by developing a biohybrid model reference adaptive control (MRAC) scheme, which stabilizes the control algorithm for strictly proper plants. We evaluate the performance of this novel cerebellar-inspired algorithm with MRAC scheme in the experimental control of a dielectric electroactive polymer, a class of artificial muscle. The results show that the augmented cerebellar algorithm is able to accurately control the displacement response of the artificial muscle. The proposed solution not only greatly extends the practical applicability of the cerebellar-inspired algorithm, but may also shed light on cerebellar involvement in a wider range of biological control tasks.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2015 Wilson, Assaf, Pearson, Rossiter, Dean, Anderson and Porrill. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (http://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
Keywords: | adaptive control; adaptive filter; artificial muscles; cerebellum; electroactive polymer; soft robotics |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Automatic Control and Systems Engineering (Sheffield) The University of Sheffield > Faculty of Science (Sheffield) > Department of Psychology (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 14 Jan 2016 15:59 |
Last Modified: | 14 Jan 2016 15:59 |
Published Version: | http://dx.doi.org/10.3389/fnbot.2015.00005 |
Status: | Published |
Publisher: | Frontiers |
Refereed: | Yes |
Identification Number: | 10.3389/fnbot.2015.00005 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:92265 |