Mozumder, M., Tarvainen, T., Arridge, S. et al. (3 more authors) (2015) Approximate Marginalization of Absorption and Scattering in Fluorescence Diffuse Optical Tomography. (Unpublished)
Abstract
In fluorescence diffuse optical tomography (fDOT), the reconstruction of the fluorophore concentration inside the target body is usually carried out using a normalized Born approximation model where the measured fluorescent emission data is scaled by measured excitation data. One of the benefits of the model is that it can tolerate inaccuracy in the absorption and scattering distributions that are used in the construction of the forward model to some extent. In this paper, we employ the recently proposed Bayesian approximation error approach to fDOT for compensating for the modeling errors caused by the inaccurately known optical properties of the target in combination with the normalized Born approximation model. The approach is evaluated using a simulated test case with different amount of error in the optical properties. The results show that the Bayesian approximation error approach improves the tolerance of fDOT imaging against modeling errors caused by inaccurately known absorption and scattering of the target.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2015 The Author(s) |
Keywords: | physics.comp-ph; physics.comp-ph |
Dates: |
|
Institution: | The University of Sheffield |
Academic Units: | The University of Sheffield > Faculty of Engineering (Sheffield) > Department of Electronic and Electrical Engineering (Sheffield) |
Depositing User: | Symplectic Sheffield |
Date Deposited: | 28 Jan 2016 13:34 |
Last Modified: | 20 Mar 2018 20:29 |
Published Version: | http://arxiv.org/abs/1501.00384 |
Status: | Unpublished |
Refereed: | No |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:90401 |