Aaron, JE, Shore, PA, Itoda, M et al. (4 more authors) (2015) Mapping trabecular disconnection "hotspots" in aged human spine and hip. Bone, 78. pp. 71-80. ISSN 8756-3282
Abstract
Trabecular bone disconnection is an independent factor in age-related skeletal failure where real termini (ReTm; rare in youth) may cause weakness disproportionate to tissue loss, yet their structural contribution at vulnerable locations remains uncertain. ReTm (previously recorded at the iliac crest) were mapped in "normal" aged vertebral bodies (T11-L5 autopsy; 20 females, 10 males) and corresponding proximal femora (autopsy; 10 females). Results were compared with biomechanically failed femora from orthopaedic subjects aged >. 58. yr (osteoporosis OP, 10 females; osteoarthritis OA, 10 females). A novel direct 2D/3D histological method was applied to large, thick (300. μm) slices superficially silver-stained to separate ReTm (unstained) from apparent termini (planar artefacts, brown). Light microscope field co-ordinates enabled ReTm mapping and statistical testing relative to i) sex, ii) tissue sector and iii) slicing plane. In men ReTm populations were small and random while in women they were large and sector-specific. In vertebrae they clustered anterior/superior being rare posterior/inferior; in the femoral head they concentrated distal/superior and also near the fovea, being fewer distal/inferior. A distribution polarity was evident with 100% more ReTm observed transversely (i.e., on tensile-related cross struts) than longitudinally (i.e., on compression-related vertical struts). Their numbers rose in OP (BV/TV. <. 14%, microCT) and in OA (BV/TV. >. 14%), remaining polarised and sector-specific in OP only. Comparative experimentation by marrow elution of an OP animal model demonstrated "floating segments" as a possible outcome. Conclusions were supported statistically that trabecular disconnection "hotspots" at vulnerable locations are sex- and sector-specific, mainly transaxial, and subject to disease modulation.
Metadata
Item Type: | Article |
---|---|
Authors/Creators: |
|
Copyright, Publisher and Additional Information: | © 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
Keywords: | Cancellous bone disconnection; Fracture site microarchitecture; Ageing vertebra; Ageing femur; Osteoporosis; Osteoarthritis |
Dates: |
|
Institution: | The University of Leeds |
Academic Units: | The University of Leeds > Faculty of Medicine and Health (Leeds) > School of Medicine (Leeds) > Institute of Rheumatology & Musculoskeletal Medicine (LIRMM) (Leeds) > Clinical Musculoskeletal Medicine (LIRMM) (Leeds) |
Depositing User: | Symplectic Publications |
Date Deposited: | 27 Jul 2015 12:35 |
Last Modified: | 18 May 2016 14:52 |
Published Version: | http://dx.doi.org/10.1016/j.bone.2015.04.009 |
Status: | Published |
Publisher: | Elsevier |
Identification Number: | 10.1016/j.bone.2015.04.009 |
Related URLs: | |
Open Archives Initiative ID (OAI ID): | oai:eprints.whiterose.ac.uk:88347 |